
20-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

FPGA In-System Configuration

20-2

FPGA Operation Modes

FPGAs normally have two operation models: "configuration mode"
or "user mode".

Immediately after power-up, FPGAs are automatically in configuration
mode and all their outputs are at high impedance states

FPGAs can be also switched to configuration model by activating
configuration pins (e.g. applying low voltage at PROG_B pin)

Example: Virtex-4 power-up sequences

20-3

FPGA Configuration Methods

Common FPGA configuration interfaces include:

The JTAG interface
Synchronous serial interface
Synchronous parallel interface
…

Download configuration bitstream from a PC
An on-board microcontroller sends configuration bitsteam to FPGA
FPGA is configured by data from on-board boot PROM

FPGAs will switch to user mode after configuration. The configuration
methods normally include:

20-4

Overview of FPGA Configuration Mechanism

An FPGA can be partitioned into non-programmable and programmable area.

Non-programmable area includes: all or parts of configuration interface
and configuration logic.

Programmable area includes: CLBs, portion of IOBs, routing resources, etc.

In reconfiguration mode, configuration logic gets configuration bitstream from
interface circuits and write them into proper locations in configuration memory.

FPGA

Interface

C
onfiguration logic

Programmable
area

20-5

FPGA Configuration Memory

FPGA configuration memory can be visualized as a rectangular array of bits.

Configuration bits are arranged into groups, e.g. frames and columns in Xilinx FPGAs

Addresses are assigned to configuration bit groups such that they can be selectively
accessed by configuration logic.

• • •

• • •

• • •

• • •

• • •
• • • • • • • • • •

group

Configuration memory

Configuration bit

20-6

FPGA Configuration Logic

Configuration logic contains a set of registers, which control the operation
of configuration logic and reflect the status of configuration operation
Addresses are assigned to registers for accessing registers.
In a configuration operation, controls registers are first loaded with proper values
before configuration bits arriving
Example: Registers in Xilinx Spartan 3 configuration logic

20-7

FPGA Bitstream Composition

FPGA bitstreams normally include three parts

1. First a synchronization word
2. Packages of commands and data for writing or reading registers

in configuration logic (configuration memory is updated through
registers in configuration logic)

3. Data that used to perform error checking

All the data that will be written into registers and configuration memories
are encapsulated into packages. Each package starts with a package
header.

Example: Xilinx Spartan 3 type-1 package header

20-8

FPGA JTAG Interface

The JTAG interface is originally designed for testing purpose.
It provides a mechanism to shift testing vectors into IC I/O
ports and shift circuit responses from IC I/O ports.

I/O

I/O

I/O

I/O I/O I/O I/O

I/O

I/O I/O I/O

I/O

PCB
IC

20-9

FPGA JTAG Interface

A JTAG interface normally includes four pins: TDI, TDO, TCK, TMS

Example: JTAG interface in Xilinx FPGAs

20-10

FPGA JTAG Boundary-Scan Chain

D flip-flops and multiplexers are added to FPGA IO cells to implement
JTAG boundary-scan chain.

Example: Each Xilinx FPGA IOB contains three bits of the boundary-scan
chain.

20-11

JTAG TAP State Machine

Data shifting operation in a JTAG scan chain is controlled by a Test
Access Port (TAP) state machine.
State transitions of the TAP FSM is controlled by TMS and TCK

20-12

FPGA configuration via Boundary-scan chain

Example: configuring multiple Virtex-4 devices via JTAG chian

The JTAG header can be implemented using a CPLD or microprocessor.

20-13

Other Configuration Interfaces in Xilinx FPGAs

Select-MAP:

Master-Serial Model:

Slave-Serial Model:

• External clock is needed
• Data is loaded one-byte per clock cycle
• It is desirable when configuration speed is a concern

• Using internal clock
• Data is loaded one-bit per clock cycle

• External clock is needed
• Data is loaded one-bit per clock cycle
• Allow daisy-chain configuration

Configuration mode is selected by applying proper values at model
selection input pins M[2:0]

20-14

Serial Configuration Examples

Master serial mode configuration: Master/slave serial mode
daisy chain configuration:

20-15

Serial Configuration Examples

Ganged serial mode configuration:

20-16

Parallel Configuration Examples

Master SelectMAP configuration: Slave SelectMAP configuration:

20-17

Parallel Configuration Examples

Multiple slaves in SelectMAP
configuration:

Ganged slaves in SelectMAP
configuration:

20-18

FPGA Partial Reconfiguration

Partial reconfiguration is a design process, which allows a limited,
predefined portion of an FPGA to be reconfigured while the
remainder of the device continues to operate.

In-the-field hardware upgrades and updates to remote sites

Runtime reconfiguration

Adaptive hardware algorithms

Continuous service applications

Applications

Other Advantages

Reduced device count

Reduced power consumption

More efficient use of available board space

20-19

Example: module-based partial reconfiguration approach
for Virtex FPGAs

The chip layout is partitioned into fixed and reconfigurable areas.

The reconfigurable module height is always the full height of the device.

Reconfigurable modules communicate with other modules, both fixed and
reconfigurable, by using a special bus macro.

Static portions of the design do not rely on the state of the module under
reconfiguration while reconfiguration is taking place.

20-20

Modular Design

Top-down design approach
Design activities start from partitioning a complex system into several self-contained
sub-design (modules)

The top level of the design contains global logics (e.g. clock, I/O circuits) and
instantiated modules.

At the top level, instantiated modules are treated as black-boxes and only
communications (ports) between modules are described.

20-21

Modular Design Flow

System partition
Top level design

Initial Budgeting

Individual module
implementation

Finally assembling

Schematic, HDL coding
Top level verification

Visualize system operation

Area constraints
I/O constraints

Timing constraints

HDL coding, mapping,
Placement, routing
Individual module verification

Placement, routing

Final verification

20-22

An example of Top-level Verilog Code

module top (clk, rst, in1, in2, out1, out2);
input clk, rst, in1, in1, in2;
output out1, out2;
wire clk_buf, a, b, c, d, e, f, h;

// clock circuit
IBUFG ibuf_dll (.I(clk), .O(clk_buf));
CLKDLL dll_1 (.CLKIN(clk_buf),
…..

// global logic
assign b = a*in1;
…..

// Instantiation module
M1 insta_1 (.in1(a), .in2(b), .out(c));
M2 insta_2 (.rst(rst), .clk(clk_buf),
.in1(e), .in2(f), .out(h));
…
endmodule

module M1 (in1, in2, out);
input in1, in2;
output out;
endmodule

module M2 (rst, clk, in1, in2, out);
input rst, clk, in1, in2;
output out;
endmodule

20-23

• Position global logic
• Size and position each module on the target chip
• Position the input and output ports for each module
• Budget initial timing constraints

Initial Budgeting

Tasks in initial budgeting

