
10-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

FPGA Microprocessor

Part 1

10-2

Microprocessor v.s. ASIC

For a given function, we can implement it by using a general
purpose microprocessor or by designing an ASIC

Microprocessor ASIC

1. General purpose 1. Application specific

2. Flexible and easy to update by
loading new software

2. Less flexible and almost impossible to
Update unless the ASIC contains
programmable circuits

3. Typically, the performance is
not optimized for a given task

3. Normally, optimal performance

10-3

How Does A Microprocessor Work?

First, an instruction is fetched into the microprocessor
Second, the instruction is decoded for execution
Finally, the instruction is executed.

10-4

Advantages of FPGA Microprocessors

The architecture of FPGA microprocessor can be easily modified to achieve
optimal performance for a given application.

FPGA General purpose microprocessor

Example: calculate Y = A•X2 + B•X + C

10-5

FPGA
microprocessor

data[7:0]

csb
web

oeb

addr [14:0]

• •
 •

• •
 •

32Kx8 Memory

0 73

R0
R1

R14
R15

Inst [0]
Inst [1]

Inst [126]
Inst [127]

Data
Memory

Instruction
memory

Introduction to GNOME Microprocessor

Data : 4 bits
Instruction : 8 bits
Data RAM : 16 X 4
Instr. RAM : 128 X 8

C

Z

ACC

C : Carry flag
Z : Zero flag
ACC : Accumulator Register [3:0]

10-6

Instructions of GNOME Microprocessor

Mnemonic Operation Description

load Rd ACC Rd Load the accumulator with the contents of the memory
location whose address is d.

loadi d ACC d Load the accumulator with the immediate data d

store Rd Rd ACC Store the value in the accumulator into RAM location Rd.

add Rd ACC ACC+Rd+C Add the content of RAM location Rd and the C flag to the

Accumulator.

addi d ACC ACC+d+C Add the value d and the C flag to the accumulator.

xor Rd ACC ACC ⊗ Rd EXCLUSIVE-OR the content of RAM location Rd with the
Accumulator.

test Rd Z ACC • Rd AND the contents of RAM location Rd with the accumulator,
but do not store the results in the accumulator. Instead, set
the Z flag if the result is 0, otherwise clear the Z flag.

10-7

Instructions of GNOME Microprocessor

Mnemoni
c

Operation Description

clear_c C 0 Clear the C flag to zero.

set_c C 1 Set the C flag to one.

skipc PC PC+1+C If C=1, skip the next instruction by incrementing the
program counter by two instead of one. Otherwise,
execute the next instruction

skipz PC PC+1+Z If Z=1, skip the next instruction by incrementing the
program counter by two instead of one. Otherwise,
execute the next instruction

jump a PC a Jump to program address a and execute instructions
from address a. a is an address in the range [0..127]

10-8

Instruction Encoding

Instruction Format

037

Opcode Operand

— Fixed length instructions (8 bits)
— Each instruction can have one or zero operand

07

Opcode

067

addressOp-
code

clear_c set_c

jump a

load Rd, loadi d, store Rd, add Rd, addi d,

xor Rd, xori d, test Rd, testi d

10-9

Instruction Encoding
Mnemonic Encoding Comment
load Rd 0 1 0 0 d3 d2 d1 d0 d3 d2 d1 d0 is the address of RAM location

loadi d 0 0 0 1 d3 d2 d1 d0 d3 d2 d1 d0 is the immediate data

store Rd 0 0 1 1 d3 d2 d1 d0 d3 d2 d1 d0 is the address of RAM location

add Rd 0 1 0 1 d3 d2 d1 d0 d3 d2 d1 d0 is the address of RAM location

addi d 0 0 1 0 d3 d2 d1 d0 d3 d2 d1 d0 is the immediate data

xor Rd 0 1 1 0 d3 d2 d1 d0 d3 d2 d1 d0 is the address of RAM location

test Rd 0 1 1 1 d3 d2 d1 d0 d3 d2 d1 d0 is the address of RAM location

clear_c 0 0 0 0 0 0 0 0

set_c 0 0 0 0 0 0 0 1

skipc 0 0 0 0 0 0 1 0

skipz 0 0 0 0 0 0 1 1

jump a 1 a6 a5 a4 a3 a2 a1 a0 a6 a5 a4 a3 a2 a1 a0 is the new instruction address

10-10

Operation of GNOME Microprocessor

Execution of a single instruction

Fetch Decoding Execution

1. Fetch instruction

2. Update PC register

1. Decode instruction

2. Fetch operand if it is
needed

1. Execute the instruction

10-11

clk

rst

sel_data_ram

write

read

ld_ir

ld_ir_lsn

curr_acc(3:0)

curr_pc(6:0)

curr_ir(7:0)

data(7:0)

addr(14:0)

csb

web

oeb

clk

rst

curr_ir(7:0)

jump_pc

curr_pc(6:0)

inc_pc

addgen

clk

rst

curr_ir(7:0)

curr_carry

curr_zero

alu_op(2:0)

sel_data_ram

read

write

ld_ir

ld_ir_lsn

inc_pc

jump_pc

clk

rst

alu_op(2:0)

curr_ir(7:0)

curr_acc(3:0)

curr_carry

curr_zero

datapath

addr(14:0)
csb
web
oeb

clk

rst

data(7:0)

d(3:0) s(6:0)

leddcd

U5

s(6:0)

FSM &
decoder

Fetch

GNOME Block Diagram

10-12

Address Generation

If inc_pc = 1, the adder output goes to the
input of the register (for normal instruction
address update and skipz and skipc
instructions).

If jump_pc =1, curr_ir goes to the input of
the register (for jump instruction)

If jump_pc =0 and inc_pc=0, the output
of the register goes to the input of the

register.

It is prohibited to have jump_pc =1
and inc_pc=1 at the same time.

After reset, curr_pc=0. Thus, the microprocessor
fetches the first instruction from address 000000

10-13

Instruction Latch & Data Bus Circuits

For write operation (store rd), the
write buffer is on and data on
curr_acc are written into memory.
During other time, the write buffer
is off (high impedance output)

To fetch an instruction, both muxs
pass the data on the data bus to the
instruction register

To fetch data from data RAM, only
the least significant mux passes the
pass the data on the data bus to the
instruction register

10-14

Control & decoding Unit

Fetch

DecodingExecution

Reset

DFF DFF DFF

clock

D Q D Q D Q
set reset reset

reset

Combinational circuits for
instruction decoding and

generating control signals

curr_ir

Current state

Curr_zero

Curr_carry
• •

 •
•

Control signals

10-15

Control & decoding Unit

Example: how generate control signal write
— write signal should be driven to high to enable the write buffer

during the execution state of store rd instructions

write = exe_state AND store_instruction

1. Signal exe_state is high when GNOME is during execution states
2. Signal store_instruction is high if the current instruction is store rd

10-16

Execution Unit

Accumulator-Based
Architecture

— For operations with two operands,
one operand is accumulator.

— The execution result is store in
accumulator

ALU operations

Name Operation Encoding

PASS ACC B 0 0 1

ADD ACC ACC+B+Cin 0 1 0

XOR ACC ACC ⊗ B 0 1 1

AND Zero flag = ACC • B 1 0 0

SET_C Set carry flag 1 0 1

CLR_C Clear carry flag 1 1 0

B

ACC

Cin

Cout

10-17

ALU Circuit

alu_op[1] alu_op[0] Operation
0 1 PASS

1 1 XOR
1 0 ADD*

* Extra circuits are needed for carry generation

10-18

Complete ALU Circuit

10-19

Programming GNOME Processor

Example: writing a program to calculate 48H + 29H

Instructions Machine code

Loadi 8 18H
Store R0 30H
Loadi 4 14H
Store R1 31H
Loadi 9 19H
Store R2 32H
Loadi 2 12H
Store R3 33H
Clear_c 00H
Load R0 40H
Add R2 52H
Store R4 34H
Load R1 41H
Add R3 53H
Store R5 35H

10-20

Put Everything Together

Fetch

DecodingExecution

Reset Instruction
Decoding

&
Control logic

Connect to
Ext. Data
Bus

Connect to
Ext. Addr.
Bus

