
11-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

FPGA Microprocessor

Part 2

11-2

How to make FPGA Microprocessor Faster?

Pipeline

Cache Memory

Register File

Custom Instructions

Example: xr16 FPGA RISC microprocessor

Custom instruction for computing A*X2 + B*X + C

11-3

Register File

Microprocessor with single register (accumulator)

— Disadvantage: Microprocessor has to frequently access off-chip
memory

FPGA Microprocessor

Off-chip
memory

Data bus

Address bus

1) Slow
2) Large power consumption
3) Increased memory traffic

11-4

Register File

Microprocessor with multiple registers (register file)

ALU

Register
File

Imm. Data

Imm. Data

— Advantage: It reduces the frequency that the Microprocessor accesses
off-chip memory

1) Increase operation speed
2) Reduce power consumption
3) Reduce memory traffic

— For the above structure, the register file is preferred to have one
write port and two read ports.

11-5

FPGA Implementation of Register File

Register File

Read port 1

Read port 2

Address 1

Address 2

Write port

Register 1

Register 2

1. During write operation, address 1 and address 2 have the same
address and the same data is written into Register 1 and Register 2.

2. Two different memory locations can be read simultaneously
by applying different addresses to Register 1 and Register 2

11-6

Register File

Register Implementation on Xilinx FPGAs

RAM0

RLOC=R0C0.F
INIT=0000

RAM16X1S

WE

D

WCLK

A0

A1

A2

A3

O

Q1

RLOC=R0C0.FFY

FDCE

D

C

CE

CLR

Q

Q0

RLOC=R0C0.FFX

FDCE

D

C

CE

CLR

Q

RAM1

RLOC=R0C0.G
INIT=0000

RAM16X1S

WE

D

WCLK

A0

A1

A2

A3

O

INV

A[3:0]

D1

WE

Q1

Q0D0

CLK

R0

R1

A3

A0

A1

A2

A3

A0

A1

A2

Xilinx XC4000 CLB

Read addr. Write addr.

Valid output

Read Write

11-7

Register File

Instruction format for microprocessors with multiple registers

Opcode Destination Operand 1 Operand 1

Add R1, R2, R3 R1 = R2 + R3

Opcode Destination Source

Add R1, R2 R1 = R1 + R2

Possible Format 1

Possible Format 2

Load R1, [120] R1 = Memory (120)

Store [120], R1 Memory (120) = R1

11-8

Introduction to Pipeline

Instruction execution without pipeline

IF ID EXE IF ID EXE IF ID EXE

Instruction i Instruction i+1 Instruction i+2

Instruction execution with pipeline

IF ID EXE Instruction i

IF ID EXE

IF ID EXE

Instruction i+1

Instruction i+2

IF: Instruction fetch
ID: Instruction decoding
EXE : Instruction execution

11-9

Hardware Implementation

Non-pipelined architecture

Pipelined architecture

Fetch Decoding Execution

Fetch Decoding Execution

clock

Pipeline Register

The register store instructions, operands, and control signals
The clock frequency is determined by the slowest unit in the above circuit

11-10

Hardware Implementation

IF ID EXE
Pipeline Stages

Simple hardware Implementation

ALU

Pipeline RegisterPipeline Register

Reg.
File

A

B

Op
Instruction
decoding

PC

Instruction R
eg.

1

11-11

Structure Hazard

IF ID EXE

IF ID EXE

Store [120], R0

Need access memory to fetch instruction

Need access memory to store data

Structure hazards arise from resource conflicts when hardware
cannot support all possible combinations of instructions in
simultaneous overlapped execution

IF ID EXE

Add R0, R1

AND R2, R3

11-12

Structure Hazard

Solution 1:
Delay fetching instruction Store R1 by one clock cycle.

IF ID EXE Store [120], R0

Stall (or bubble)

IF ID EXE

— Advantage: Less expensive to implement.
— Disadvantage: Degrade Performance; need design

control circuit to detect resource hazard

IF ID EXE Add R0, R1

AND R2, R3

11-13

Structure Hazard

Solution 2: Use separate memories for data and instructions

Micro-
processor

Data memory

Inst. memory

Store [120] R0

— Disadvantage: Expensive to implement.
— Advantage: Fast performance, less complicated control logic

Note:
1. This solution only alleviates the problem. There still exists

resource hazards, e.g. to execute instructions in the order of
Store R1, Add R0.

2. There are other structure hazards caused by other hardware
conflicts.

IF ID EXE

IF ID EXE

IF ID EXE

Add R0, R1

AND R2, R3

11-14

Data Hazard

Data hazards arise when an instruction depends on the results
of a previous instruction. Such hazards are generated if the
previous instruction does not generate the results at the time
the current instruction needs them.

IF ID EXE

IF ID EXE

Add R0, R1

AND R0, R2

Register read R0 in the middle of this cycle
(refer to page 11-6)

Write result to R0 at the end of this cycle

11-15

Data Hazard

Solution 1: Data Forwarding

ALU

Pipeline Register

Reg.
File

A

B

Op

Data Forward Path

IF ID EXE

IF ID EXE

Add R0, R1

AND R0, R2

Timing diagram for this cycle

Without data forwarding

With data forwarding

clk

ALU

Reg. R0

Mux o/p

A

Vold

Vold

Vold

Vne

w Vne

w

clk

ALU

Mux o/p

A

Vne

wVne

w Vne

w

11-16

Data Hazard

Solution 2: Instruction re-ordering

Add R0, R1
AND R0, R2
Add R5, R6

Add R0, R1
Add R5, R6
AND R0, R2

Original Instruction order

Data hazard

Re-ordered Instructions

Note:

1. Data forwarding is a hardware-based approach and instruction
re-ordering is software-based approach.

2. Even both approaches are used, data hazards can not completely
avoided.

No Data
hazard

11-17

Control Hazard

Control hazards are caused jump and other instructions that
change PC value.

— For the microprocessor shown in slide 11-6, we assume that a jump
instruction changes PC register value at its execution cycle.

JNC label1

Add R5, R6

Load R0, [120]

Add R1, R2

Label1: Add R7, R8

IF ID EXE

IF ID

IF

IF ID EXE

If jump occurs, PC is changed by the end of this cycle

Discard

11-18

Design Example: xr16 FPGA Microprocessor

Developed by Jan Gary, Gary Research LLC (www.fpgacpu.org)

RISC Architecture

16-bit instructions

Register file contains 16 16-bit registers

Load/Store architecture

Three stage pipeline (IF, ID, EXE)

Memory is byte addressable

11-19

Instructions of xr16 Microprocessor

Hex Fmt Assembler Semantics N

0dab rrr add rd,ra,rb rd = ra + rb; 1
1dab rrr sub rd,ra,rb rd = ra – rb; 1
2dai rri addi rd,ra,imm rd = ra + imm; 1
3d*b rr {and or xor andn adc

sbc} rd,rb
rd = rd op rb; 1

4d*i ri {andi ori xori andni
adci sbci slli slxi
srai srli srxi} rd,imm

rd = rd op imm; 1

5dai rri lw rd,imm(ra) rd = *(int*)(ra+imm); 2
6dai rri lb rd,imm(ra) rd = *(byte*)(ra+imm); 2
8dai rri sw rd,imm(ra) *(int*)(ra+imm) = rd; 2
9dai rri sb rd,imm(ra) *(byte*)(ra+imm) = rd; 2
Adai rri jal rd,imm(ra) rd = pc, pc = ra + imm; 3
B*dd br {br brn beq bne bc

bnc bv bnv blt bge
ble bgt bltu bgeu
bleu bgtu} label

if (cond) pc += 2*disp8; *

Ciii i12 call func r15 = pc, pc = imm12<<4; 3
Diii i12 imm imm12 imm'next15:4 = imm12; 1

11-20

xr16 Design Hierarchy

CTRL DP
clk

•
•

• Data [15:0]

Address [15:0]

instruction [15:0]

Status register value

11-21

xr16 Pipeline Stages

IF: Instruction Fetch
Fetch instruction

Update PC PC+2

DC: Instruction Decoding and Register File Access
Decode instructions

Read Register operand

EX: Execute Instruction
Perform arithmetic or logic operation

Update PC for jump instructions

Access memory to perform load or store instructions

11-22

Exception for Load/Store Instructions

A Load or Store instruction need two execution cycles to
complete

IF DC EX1

IF

EX2Execution of a load or store

— The execution of Load or Store needs to access memory, which make it
longer

— Alternative solution is to slow down clock such that it possible to complete
a load or store operation within a clock cycle. However, this solution is not
favored because it will significantly slow down the overall performance

DC EXAlternative solution

11-23

xr16 Pipeline Hazards

Data Hazards
Example: ANDi R0, 7, Addi R2, R0, 7

EXECUTION UNIT

ADDRESS/PC UNIT

RESULT MUX

RETBUF

RLOC=R1C9

BUFT16X
T

BREGS

REGFILE
RLOC=R1C1

D[15:0]

A[3:0]

WE

CLK

Q[15:0]

LOGICBUF

RLOC=R1C4

BUFT16X
T

SRBUF

RLOC=R1C1

BUFT16X
T

IMMED

IMM16
RLOC=R1C3

B[15:0]

IR[11:0]

O[15:0]

OP[5:0]

B

FD12E4E
RLOC=R1C3

D[15:0] Q[15:0]

CE15_4

CE3_0

CLK

AREGS

REGFILE
RLOC=R1C0

D[15:0]

A[3:0]

WE

CLK

Q[15:0]

A

FD16E
RLOC=R1C2

D[15:0]

CE

CLK

Q[15:0]

ADDSUB

RLOC=R-1C5

ADSU16

A[15:0]

ADD

B[15:0]

CI

CO
OFL

S[15:0]

LOGIC

LOGIC16
RLOC=R1C4

A[15:0]

B[15:0]

OP[1:0]

O[15:0]

SUMBUF

RLOC=R1C5

BUFT16X
T

BUF

SLBUF

RLOC=R1C0

BUFT16X
T

PCINCR

RLOC=R-1C8

ADD16

A[15:0]

B[15:0]

CI

CO
OFL

S[15:0]

ADDRMUX

M2_16Z
RLOC=R1C7

A[15:0]

B[15:0]

SEL

O[15:0]

ZERO

PC

RAM16X16S
RLOC=R1C9

A[3:0]

D[15:0]

WE

WCLK

O[15:0]

RET

FD16E
RLOC=R1C9

D[15:0]

CE

CLK

Q[15:0]

PCDISP

PCDISP16
RLOC=R1C6

BRDISP[7:0]

BRANCH

PCDISP[15:0]

ZHBUF

RLOC=R1C2

BUFT8X
T

DOUT

FD16E
RLOC=R1C4

D[15:0]

CE

CLK

Q[15:0]

FWD

M2_16
RLOC=R1C2

A[15:0]

B[15:0]

SEL

O[15:0]

Z

ZERODET
RLOC=R1C6

I[15:0]Z

UDLDBUF

RLOC=R5C2

BUFT8X
T

UDBUF

RLOC=R1C3

BUFT8X
T

LDBUF

RLOC=R5C3

BUFT8X
T

RNA[3:0]

RNB[3:0]

AREG[15:0]

BREG[15:0] B[15:0]

AMUX[15:0]

BMUX[15:0]

RETAD[15:0]

A[15:0]

SUM[15:0]

LOGIC[15:0]

PCNEXT[15:0]

IMMOP[5:0]

PCDISP[15:0]

IMM[11:0]

DOUT[7:0]

BRDISP[7:0]

G,G,G,G,G,G,G,G

RESULT[15:8]

RESULT[15:8]

SRI,A[15:1]

RESULT[7:0]

RESULT[15:0]

PC[15:0]

DOUT[15:8] RESULT[7:0]

DOUT[15:8]

LOGICOP[1:0]

DOUT[15:0]

A[14:0],G

ADDR[15:0]

G,G,G,DMAPC

CLK

RFWE

ZXT

CLK

CLK

RFWE

CLK

PCE

SLT

Z

RETADT

PCCE

LDT

GND

SRT

SUMT

LOGICT

CI

ADD

FWD

N

A15

CLK

CO

SELPC

ZEROPC

CLK

CLK

BCE15_4

V

G

SUM15

PCE

BRANCH

PCE
SRI

UDLDT

UDT

RETCE

DMAPC

Data Forwarding

11-24

xr16 Pipeline Hazards

Structure Hazards Caused by Memory Access

Scenario 1: Memory is not ready when fetching the next instruction

t1 t2 t3 t4 t5 t6

IF1 DC1 EX1

IF2 IF2 DC2 EX2

IF3 DC3 EX3
Memory is not ready

IF DC EX

clock

Solution: Disable clock that goes to pipeline registers during t3 cycle

11-25

xr16 Pipeline Hazards

Structure Hazards Caused by Memory Access

Scenario 2: execution of Load or Store instructions

t1 t2 t3 t4 t5 t6

IFL DCL EXL1

IF2 DC2 EX2

IF3 DC3 EX3

Load Instruction accesses memory at this clock cycle,
So, new instruction can not be fetched at this clock cycle

EXL2 (Load instruction)

IF4 DC4 EX4

11-26

xr16 Pipeline Hazards

Control scheme for Scenario 2

ALU

Reg.
File

A

B

Op
Instruction
decoding

Instruction R
eg.

Temp.
Reg.

Instr. From Mem.

t3 cycle: Instruction 3 is fetched from memory and stored into Temp. Reg.

t4 cycle: Pipeline registers remain the same data (by disabling their clock)

and complete the Load instruction

T5 cycle: Fetch instruction 4 from memory (IF4)

Load instruction 3 from Temp. Reg. into Pipeline Reg. 1 (DC3)

Load operands and ALU op-code into Pipeline Reg. 2 (EX2)

Pipeline Reg. 1 Pipeline Reg. 2

11-27

Introduction to Cache Memory

Microprocessor speed is normally faster than memory speeds

Smaller memories are faster than larger memories

Principle of Locality

Temporal locality: recently accessed data or instructions are
likely to be accessed in the near future

Spatial locality: items (data or instructions) whose addresses
are near close tend to be referenced close together.

11-28

Introduction to Cache Memory

Memory hierarchy

Microprocessor

Register

On-chip
cache

Level 2
cache

Main
memory

11-29

Custom Instructions

The flexibility of FPGA processors provides another option
to improve system performance by implementing custom
instructions for critical computations.

— For example: in an application function A•X2 + B•X + C is frequently
evaluated.

If this function is evaluated with a general purpose microprocessor,
a small procedure consisting of multiple instructions (such as mul,
load, store) need to be executed, which is slow. To improve performance,
higher clock frequency is needed

If this function is evaluated with an FPGA microprocessor, a custom
instruction can be implemented to calculate the function. Only a single
instruction is executed to evaluate the function. Even if the FPGA
microprocessor has a slower clock frequency, it may still outperform
the general purpose microprocessor

11-30

ALU

Reg.
File

A

B

Op
Instruction
decoding

Instruction R
eg.

X

X X
A

B
C

Dest. Addr. Dest. Addr.

X

Custom Instructions

Custom Instruction for computing A•X2 + B•X + C

11-31

Custom Instructions

Execution of the Custom Instruction

t1 t2 t3 t4 t5 t6 t7

IF1 DC2 EX3

IFC DCC EXC1

IF3 DC3 EX3

(Regular instruction)

IF4 DC4
EX4

EXC2 EXC3

IF4 DC4
EX4

(Custom instruction)

1-32

Overview

1-33

PicoBlaze Architecture

1-34

PicoBlaze Layout

1-35

Download PicoBlaze IP

http://www.xilinx.com/ipcenter/processor_central/picoblaze/index.htm

Using PicoBlaze in your design

Instruction sets, see Xilinx Application Notes: XAPP213.pdf

1-36

Programming PicoBlaze

Compile the program using KCPSM3
The generated HDL ROM code can be synthesized with other design modules.

The hex file generated can be loaded via JTAG interface after the circuit is implemented

1-37

Simulate your code with pBlazeIDE

http://www.mediatronix.com/pBlazeIDE.htm

