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Overview
Motivation 

Outline 
Number Systems

— Fixed-Point Number System
— Floating-Point Number System 

VLSI Architectures for DSP Circuits

Distributed Arithmetic Circuits

Digital Signal Processing (DSP) is one of the most active area in VLSI applications
Traditionally, DSP algorithms are implemented either using general purpose DSP
processors (Low speed, less expensive, flexible) or using ASICs (High speed,
expensive, less flexible)
FPGAs provide solutions that maintain both the advantages of the approach based 
on DSP processors and the approach based on ASICs
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Fixed-Point Number System
Binary number representation of fixed-point numbers 

bn bn-1 bn-2 ••• b0 b-1 b-2 ••• b-m

∑∑
==

•+•=
m

j

j
j

n

i

i
i bb

11
22

Examples:

101.0101 5.3125

000.011 0.375

1.25 1.01

Binary Decimal Decimal Binary

1.24 1.001111010•••

If the binary number can have 8 bits for fractional part, we can use
1.00111101 (1.23828125) to approximate 1.24
If the binary number can have 7 bits for fractional part, we can use
1.0011111 (1.2421875) to approximate 1.24

“Binary point”
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Arithmetic Operations for Fixed-Point Numbers
Add/Subtract 

bn bn-1 bn-2 ••• b0 b-1 b-2 ••• b-m

an an-1 an-2 ••• a0 a-1 a-2 ••• a-m+/-

sn sn-1 sn-2 ••• s0 s-1 s-2 ••• s-mc

B

A

S

B

A

S+/-

The addition or subtraction of two fixed-point numbers can be performed by 
regular adder or subtracter if the “binary points” of the two numbers are aligned.
The “binary point” remains the same position in the resulted number. 
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Arithmetic Operations for Fixed-Point Numbers
Multiplication 

k bitsn - k bits l bitsm - l bits×
k+l bitsn+m-k-l bits=

Arithmetic operation with fixed word-length

For the convenience of hardware implementation, we prefer to have the product 
of a multiplication keeping the same length as the multiplicand or the multiplier
(assume they have the same length). To achieve this, we normally truncate 
the least significant bits of the product.   
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Arithmetic Operations for Fixed-Point Numbers
Normalized fixed-point numbers 

Scaling all the numbers involved in computation by a factor K such that all the 
numbers are within the range from 0 to 1   

n bits

Fixed-point number after normalization  

Addition/Subtraction  

n bits n bits+/- = n bits

Multiplication  

n bits n bits× = n bitsn bits

truncated



12-7

Representation of Negative Numbers

Signed-magnitude numbers 

Normalized magnitudeS

Sign bit: 0 for positive number and 1 for negative number

2’s complementary numbers 

Normalized 2’s complementary number S

Sign bit: 0 for positive number and 1 for negative number
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Floating-Point Numbers
Scientific Notation

6.02 x 1023

radix (base)decimal point

Binary Floating-Point Numbers

1.0two x 2-1

radix (base)“binary point”

Mantissa
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Floating-Point Representation

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

S Exponent Significand

S represents Sign 
- (1 for negative number and 0 for positive number)

Exponent represents yyyy 
- (It is a biased number, is is also called as excess-bias number. E.g. if 
a number A is a excess-8 coding, the real value of the number is A-8)

Significand represents xxxxxxxxx

(-1)S * (1 + Significand) * 2(Exponent - Bias)
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Arithmetic Operations of Floating-Point Numbers
Assume number EX

MXX 2•= EY
MYY 2•=

Addition/Subtraction: 

EEE Y
M

YX
M YXYX 2)2( •±•=± − Where XE < YE

1. Compute YE-XE, a fixed-point subtraction

2. Right shift XM by YE-XE bits to obtain XM•2Xe-Ye

3. Compute XM•2Xe-Ye±YM, a fixed-point addition or subtraction

Multiplication: 
EE YX

MM YXYX +••=• 2)(

1. Compute XM•YM, a fixed-point multiplication

2. Compute XE+YE, a fixed-point addition 
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DSP Applications 
Common DSP Functions that are implemented using VLSIs

Filters (FIR, IIR)
Fast Fourier Transform (FFT)
Direct Cosine Transform (DCT)
Encoder/decoder and error correction/detection functions
• • • • •

FIR (Finite Impulse Response) Filter

][]1[][][ 10 knxanxanxany k −•+⋅⋅⋅⋅⋅⋅+−•+•=

1. Y[n] is the output at nth clock cycle;  X[n] is the input at nth clock cycle
2. a0, a1, ….. ak-1 are filter coefficients 

IIR (Infinite Impulse Response) Filter

][]1[][][][ 10 mnybnybknxanxany mk −•+⋅⋅⋅+−•+−•+⋅⋅⋅+•=
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FIR Filter Implementation
Example:

]3[]2[]1[][][ 3210 −•+−•+−•+•= nxanxanxanxany

Tap This is a 4-tap FIR filter

Canonic form implementation:

D D D
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× × ×
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x[n]

y[n]

a0 a1 a2 a3

Clock frequency 
addermult

clk tt
f

•+
≤

3
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FIR Filter Implementation
Pipelined implementation 1:

Clock frequency 
addermult

clk tt
f

+
≤

1

D

×

+

× × ×

+ +

x[n]

y[n-3]

a0 a1 a2 a3

D

D D

D D

D

D D
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FIR Filter Implementation
Pipelined implementation 2:

Clock frequency 
mult

clk t
f 1

≤

D

×

+

× × ×

+ +

x[n]

y[n-3]

a0 a1 a2 a3

D D

D D

D

D D

D D D

(assume tmult > tadd)
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FIR Filter Implementation
Pipelined implementation 3 (inverted form):

×

+

× × ×

+ +

x[n]

y[n]

a3 a2 a1 a0

D D D

Clock frequency 
addermult

clk tt
f

+
≤

1
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×

+

× × ×

+ +

x[n]

y[n-1]

a3 a2 a1 a0

D D D

D D D D

FIR Filter Implementation
Pipelined implementation 4:

Clock frequency 
mult

clk t
f 1

≤
(assume tmult > tadd)
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FIR Filter Implementation
Pipelined implementation 5:

D D D

×

+

× × ×

x[n]

y[n-2]

a0 a1 a2 a3

D D D D

+

+

D D
mult

clk t
f 1

≤

(assume tmult > tadd)

Difficult to layout
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FIR Filter Implementation
Parallel implementation 1:

x[n+1]

x[n]
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addermult
clk tt

f
+
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FIR Filter Implementation
Parallel implementation 2:

x[n+1]

x[n]

× ×

+

× ×

+D + y[n-1]

× ×

+

×

+D

×

+ y[n-2]

x[n+3]

x[n+2]

a2 a3 a0 a1

a2 a3 a0 a1

D
x[n-1]

mult
clk t

f 1
≤

D D D D

D D D D

If tmult > tadder
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FIR Filter Implementation
Parallel implementation 3:

D

D

D

x[n+1]

x[n]
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x[n+2]

a0 a1 a2 a3

a0 a1 a2 a3
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FIR Filter Implementation
Serial implementation:

+

×a1

D

D

a0

a2

a3

x[n]
x[n-1] x[n-2]

x[n-3]

y[n]

Multiplier accumulator (MAC)
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FIR Filter Implementation
Implementation of FIR filters with large number of taps
— Examples: implementation of a 16-tap FIR filter 
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IIR Filter Implementation
Example:

]2[]1[]1[][][ 2110 −•+−•+−•+•= nxanyanxbnxbny

Direct Implementation:

×
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×a1a2b0 b1

x[n]

y[n]

Clock frequency 
addermult

clk tt
f
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IIR Filter Implementation
Pipelined Implementation 1:
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(assume tmult > tadd)
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Pipelined Implementation 2:

IIR Filter Implementation
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LUT-Based Multiplier
In many DSP circuits, multipliers always have one constant input. 

×x[n] y[n]

Ci (constant)

For the above multiplier, y[n] purely depends on x[n]. Thus, 

a look-up table (LUT) can be used to implement the multiplier  

• 
• 

•X[n]

address

y[n]

For example, a 256×16 bit memory
can be used to implement a 8-bit
multiplier if one of its input is 
always constant. 
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Distributed Arithmetic
Multiplication by using shift-and-add technique
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Distributed Arithmetic
Calculate A•Y0 + B•Y1 + C•Y2 + D•Y3
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Distributed Arithmetic
Serial Distributed Arithmetic for Computing A•Y0 + B•Y1 + C•Y2 + D•Y3



12-30

Distributed Arithmetic
LUT-Based SDA for Computing A•Y0 + B•Y1 + C•Y2 + D•Y3
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Distributed Arithmetic
LUT Technique for Distributed Arithmetic
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Distributed Arithmetic
SDA 16-MAC Circuit
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Distributed Arithmetic
SDA 16-Tap FIR Filter
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Parallel Distributed Arithmetic


