
12-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

FPGAs in DSP Applications

12-2

Overview
Motivation

Outline
Number Systems

— Fixed-Point Number System
— Floating-Point Number System

VLSI Architectures for DSP Circuits

Distributed Arithmetic Circuits

Digital Signal Processing (DSP) is one of the most active area in VLSI applications
Traditionally, DSP algorithms are implemented either using general purpose DSP
processors (Low speed, less expensive, flexible) or using ASICs (High speed,
expensive, less flexible)
FPGAs provide solutions that maintain both the advantages of the approach based
on DSP processors and the approach based on ASICs

12-3

Fixed-Point Number System
Binary number representation of fixed-point numbers

bn bn-1 bn-2 ••• b0 b-1 b-2 ••• b-m

∑∑
==

•+•=
m

j

j
j

n

i

i
i bb

11
22

Examples:

101.0101 5.3125

000.011 0.375

1.25 1.01

Binary Decimal Decimal Binary

1.24 1.001111010•••

If the binary number can have 8 bits for fractional part, we can use
1.00111101 (1.23828125) to approximate 1.24
If the binary number can have 7 bits for fractional part, we can use
1.0011111 (1.2421875) to approximate 1.24

“Binary point”

12-4

Arithmetic Operations for Fixed-Point Numbers
Add/Subtract

bn bn-1 bn-2 ••• b0 b-1 b-2 ••• b-m

an an-1 an-2 ••• a0 a-1 a-2 ••• a-m+/-

sn sn-1 sn-2 ••• s0 s-1 s-2 ••• s-mc

B

A

S

B

A

S+/-

The addition or subtraction of two fixed-point numbers can be performed by
regular adder or subtracter if the “binary points” of the two numbers are aligned.
The “binary point” remains the same position in the resulted number.

12-5

Arithmetic Operations for Fixed-Point Numbers
Multiplication

k bitsn - k bits l bitsm - l bits×
k+l bitsn+m-k-l bits=

Arithmetic operation with fixed word-length

For the convenience of hardware implementation, we prefer to have the product
of a multiplication keeping the same length as the multiplicand or the multiplier
(assume they have the same length). To achieve this, we normally truncate
the least significant bits of the product.

× ×
n

n

n n

n

n

n

12-6

Arithmetic Operations for Fixed-Point Numbers
Normalized fixed-point numbers

Scaling all the numbers involved in computation by a factor K such that all the
numbers are within the range from 0 to 1

n bits

Fixed-point number after normalization

Addition/Subtraction

n bits n bits+/- = n bits

Multiplication

n bits n bits× = n bitsn bits

truncated

12-7

Representation of Negative Numbers

Signed-magnitude numbers

Normalized magnitudeS

Sign bit: 0 for positive number and 1 for negative number

2’s complementary numbers

Normalized 2’s complementary number S

Sign bit: 0 for positive number and 1 for negative number

12-8

Floating-Point Numbers
Scientific Notation

6.02 x 1023

radix (base)decimal point

Binary Floating-Point Numbers

1.0two x 2-1

radix (base)“binary point”

Mantissa

12-9

Floating-Point Representation

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

S Exponent Significand

S represents Sign
- (1 for negative number and 0 for positive number)

Exponent represents yyyy
- (It is a biased number, is is also called as excess-bias number. E.g. if
a number A is a excess-8 coding, the real value of the number is A-8)

Significand represents xxxxxxxxx

(-1)S * (1 + Significand) * 2(Exponent - Bias)

12-10

Arithmetic Operations of Floating-Point Numbers
Assume number EX

MXX 2•= EY
MYY 2•=

Addition/Subtraction:

EEE Y
M

YX
M YXYX 2)2(•±•=± − Where XE < YE

1. Compute YE-XE, a fixed-point subtraction

2. Right shift XM by YE-XE bits to obtain XM•2Xe-Ye

3. Compute XM•2Xe-Ye±YM, a fixed-point addition or subtraction

Multiplication:
EE YX

MM YXYX +••=• 2)(

1. Compute XM•YM, a fixed-point multiplication

2. Compute XE+YE, a fixed-point addition

12-11

DSP Applications
Common DSP Functions that are implemented using VLSIs

Filters (FIR, IIR)
Fast Fourier Transform (FFT)
Direct Cosine Transform (DCT)
Encoder/decoder and error correction/detection functions
• • • • •

FIR (Finite Impulse Response) Filter

][]1[][][10 knxanxanxany k −•+⋅⋅⋅⋅⋅⋅+−•+•=

1. Y[n] is the output at nth clock cycle; X[n] is the input at nth clock cycle
2. a0, a1, ….. ak-1 are filter coefficients

IIR (Infinite Impulse Response) Filter

][]1[][][][10 mnybnybknxanxany mk −•+⋅⋅⋅+−•+−•+⋅⋅⋅+•=

12-12

FIR Filter Implementation
Example:

]3[]2[]1[][][3210 −•+−•+−•+•= nxanxanxanxany

Tap This is a 4-tap FIR filter

Canonic form implementation:

D D D

×

+

× × ×

+ +

x[n]

y[n]

a0 a1 a2 a3

Clock frequency
addermult

clk tt
f

•+
≤

3
1

12-13

FIR Filter Implementation
Pipelined implementation 1:

Clock frequency
addermult

clk tt
f

+
≤

1

D

×

+

× × ×

+ +

x[n]

y[n-3]

a0 a1 a2 a3

D

D D

D D

D

D D

12-14

FIR Filter Implementation
Pipelined implementation 2:

Clock frequency
mult

clk t
f 1

≤

D

×

+

× × ×

+ +

x[n]

y[n-3]

a0 a1 a2 a3

D D

D D

D

D D

D D D

(assume tmult > tadd)

12-15

FIR Filter Implementation
Pipelined implementation 3 (inverted form):

×

+

× × ×

+ +

x[n]

y[n]

a3 a2 a1 a0

D D D

Clock frequency
addermult

clk tt
f

+
≤

1

12-16

×

+

× × ×

+ +

x[n]

y[n-1]

a3 a2 a1 a0

D D D

D D D D

FIR Filter Implementation
Pipelined implementation 4:

Clock frequency
mult

clk t
f 1

≤
(assume tmult > tadd)

12-17

FIR Filter Implementation
Pipelined implementation 5:

D D D

×

+

× × ×

x[n]

y[n-2]

a0 a1 a2 a3

D D D D

+

+

D D
mult

clk t
f 1

≤

(assume tmult > tadd)

Difficult to layout

12-18

FIR Filter Implementation
Parallel implementation 1:

x[n+1]

x[n]

× ×

+

× ×

+D + y[n+1]

× ×

+

×

+D

×

+ y[n]

x[n+3]

x[n+2]

a2 a3 a0 a1

a2 a3 a0 a1

D
x[n-1]

addermult
clk tt

f
+

≤
1

12-19

FIR Filter Implementation
Parallel implementation 2:

x[n+1]

x[n]

× ×

+

× ×

+D + y[n-1]

× ×

+

×

+D

×

+ y[n-2]

x[n+3]

x[n+2]

a2 a3 a0 a1

a2 a3 a0 a1

D
x[n-1]

mult
clk t

f 1
≤

D D D D

D D D D

If tmult > tadder

12-20

FIR Filter Implementation
Parallel implementation 3:

D

D

D

x[n+1]

x[n]

× ×
D D

+

× ×
D D

+D

D

D D

+ y[n-5]

×
D

×
D

+

D

×
D

+D

×
D

+

D

D y[n-6]

x[n+3]

x[n+2]

a0 a1 a2 a3

a0 a1 a2 a3

12-21

FIR Filter Implementation
Serial implementation:

+

×a1

D

D

a0

a2

a3

x[n]
x[n-1] x[n-2]

x[n-3]

y[n]

Multiplier accumulator (MAC)

12-22

FIR Filter Implementation
Implementation of FIR filters with large number of taps
— Examples: implementation of a 16-tap FIR filter

×

+

D

×
D

D

+

×

+

D

×
D

D

D + D

Xk-12 a12
Xk-8 a8
Xk-4 a4
Xk a0

Xk-13 a13
Xk-9 a9
Xk-5 a5
Xk-1 a1

Xk-14 a14
Xk-10 a10
Xk-6 a6
Xk-2 a2

Xk-15 a15
Xk-11 a11
Xk-7 a7
Xk-3 a3

∑
=

−•=
15

0
][][

i
i ikxaky

12-23

IIR Filter Implementation
Example:

]2[]1[]1[][][2110 −•+−•+−•+•= nxanyanxbnxbny

Direct Implementation:

×

D

×

+ +

DD

×

+

×a1a2b0 b1

x[n]

y[n]

Clock frequency
addermult

clk tt
f

•+
≤

3
1

12-24

IIR Filter Implementation
Pipelined Implementation 1:

×

D

×

+ +

×

+

×a1a2b0 b1

x[n]

y[n-3]

DD

D

D

D

D

Clock frequency
mult

clk t
f 1

≤
(assume tmult > tadd)

12-25

Pipelined Implementation 2:

IIR Filter Implementation

+ D

+ ×

D

×

×

×

D

+

a1

a2

b0

b1

x[n] y[n-1]

addermult
clk tt

f
•+

≤
2
1

12-26

LUT-Based Multiplier
In many DSP circuits, multipliers always have one constant input.

×x[n] y[n]

Ci (constant)

For the above multiplier, y[n] purely depends on x[n]. Thus,

a look-up table (LUT) can be used to implement the multiplier

•
•

•X[n]

address

y[n]

For example, a 256×16 bit memory
can be used to implement a 8-bit
multiplier if one of its input is
always constant.

12-27

Distributed Arithmetic
Multiplication by using shift-and-add technique

12-28

Distributed Arithmetic
Calculate A•Y0 + B•Y1 + C•Y2 + D•Y3

12-29

Distributed Arithmetic
Serial Distributed Arithmetic for Computing A•Y0 + B•Y1 + C•Y2 + D•Y3

12-30

Distributed Arithmetic
LUT-Based SDA for Computing A•Y0 + B•Y1 + C•Y2 + D•Y3

12-31

Distributed Arithmetic
LUT Technique for Distributed Arithmetic

12-32

Distributed Arithmetic
SDA 16-MAC Circuit

12-33

Distributed Arithmetic
SDA 16-Tap FIR Filter

12-34

Parallel Distributed Arithmetic

