
1-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

Design Example 2:
Halftone Pixel Image Converter

1-2

Background
Image to be processed consists of 6×8 pixels.

Each pixel is represented by an 8-bit data (black and white image).

In the conversion, there are five values associated with a pixel.

• PV(i,j) : pixel value 8-bit input
• CPV(i,j): Corrected pixel value 8-bit intermediate value
• e(i,j): error of the pixel 8-bit intermediate value
• E_av(i,j): Average error 8-bit intermediate value
• HTPV(i,j): Halftone pixel value 1-bit output

⎯ Assume the pixel is located at the ith column and jth row

1-3

Calculation of Average Error

4321

4321)1,1()1,()1,1(),1(_
wwww

jiewjiewjiewjiewavE
+++

−+•+−•+−−•+−•
=

Equation for calculating E_av

1-4

Floyd-Steinberg Algorithm

For each pixel

CPV = PV(i,j) + E_av;

if CPV < CPV_thresh

HTPV(i,j) = 0;

e(i,j) = CPV;

else

HTPV(i,j) = 1;

e(i,j) = CPV-CPV_max

(CPV_thresh=128 & CPV_max=255)

1-5

Pseudo-code

for(k=1;k<N;k++) {Err[k][0]=0;}
for(k=0;k<=M;k++) {Err[0][k]=0;Err[N+1][0]=0;} //boundary initialization
for(j=1;j<M;j++)
{

for(i=1;i<N;i++)
{

E_av=(7*Err[i-1][j]+1*Err[i-1][j-1]+5*Err[i][j-1]+3*Err[i+1][j-
1])/16;

CPV=PV[i][j]+E_av;
CPV_round=(if CPV<T then 0 else 255); //T is thresh=128;
HTPV[i][j]=if(CPV_round==0 then 0 else 1);
Err[i][j]=CPV-CPV_round;

}
}

1-6

Implementation 1

Using 48 identical processing unit

Critical
path

1-7

Design of Pixel Processing Unit

1-8

Design summary of Implementation 1

High hardware cost

Demand high memory throughput (or multiple-port memory)

Slow performance (critical path delay is 14*tppu)

Straightforward design

No control logic

1-9

Implementation 2

Using a single processing unit to
sequentially process each pixel

Memory

Control &
Address
generation

Register

Using register file to store
intermediate data during
processing

Control and address generation
circuits determine where to load
data and which pixel to be
processed

Total processing time 48*tppu

PV(i,j)

HTPV(i,j)

e(i,j)

e1 e
2

e3
e4

e1: e(i-1,j); e2: e(i-1,j-1);
e3: e(i,j-1); e4: e(i+1,j-1);

1-10

Register File Design

Register file does not have to contain 48 registers since not all
intermediate date need to be stored during the same time period.

1 2 3 4 5 6 7 8

9 10 11

• Assuming that the processing order is 1, 2, 3, … to 48

• After pixel 10 is processed, error of pixel is not needed.
Hence, register for e1 can be released for e10

Neighbor for computing pixel 11

• Only 9 registers are needed

1-11

Register File Design

Using 9-to-1 multiplexers and 1-to-9 demultiplexer is straightforward
design approach. However, it results in large hardware and slow
performance

…
…

…
…

…e(i,j)

e(i-1,j)

Register

e(i-1,j-1)

e(i,j-1)

e(i+1,j-1)

1-12

Register File Design

A better design approach is to use shift-register based approach

e(i,j)

e(i+1,j-1)

e(i,j-1)

e(i-1,j-1)

e(i-1,j)

0

0

0

1-13

Register File Design

Illustration of the operation

e1

0

0

0

0

0

0

0

0

0

0

0

0

First clock cycle Pixel 1

e2

0

0

0

0

0

0

0

0

0

0

Second clock cycle Pixel 2

0

0

0

0 e1 e1

0

0

0

0

1-14

Register File Design

Illustration of the operation

e3

0

0

0

0

0

0

0

0

0

0

Third clock cycle Pixel 3

e8

0

0

0

0

0

8th clock cycle Pixel 8

0

0

0

e7

0

0

0

e2

e1

e2 e7

e6

e5

e4

e3

e2

e1

1-15

Register File Design

Illustration of the operation

e17

0

0

0

17th clock cycle Pixel 17

e16 0

0

e10

e15

e14

e13

e12

e11

e10

e9

0

0

0

0

9th clock cycle Pixel 9

e8 0

0

e7

e6

e5

e4

e3

e2

e1

e2

e1
e9

e8

e9

1-16

Implementation 3

Memory

Control &
Address
generation

Register
PV

HTPV

PV

HTPV

PV

HTPV

PV

HTPV

Using four processing units

Which is the best order of
computation?

Ideally, we want the computation
of the four processing units are
carried out simultaneously.
Hence, the clock cycle equal
the delay of one processing
unit.

1-17

Computation order in Implementation 3

The straightforward solution does not leads to optimal performance.

1 2 3 4 5 6 7 8

9 10 11

In the above approach, the computation for pixel 4 can be started
only if the computation for pixels 1, 2, and 3 are complete.

The clock cycle is 4*tppu

First clock cycle Second clock cycle

Third clock cycle

1-18

Computation order in Implementation 3
The best computation order is determined by data dependence in the
the given application.
An easy method to find data dependence is to use data flow graph
Data flow graph (DFG) of the halftone pixel converter:

1

2

3 9

4 10

5 11 17

1

2

3 9

4 10

5 11 17

DFG can be simplified
by removing edges
across multiple levels

1-19

Computation order in Implementation 3
Optimal computation schedule according to data dependence

It take 18 clock cycles to
convert a frame
If multiple frames to be
processes, some parts
of the computation can
be overlapped. Thus,
it takes 12 cycles to
convert a frame

1-20

Register File Design
In order to find the number of registers needed, we can find the
the lifetime of each register. Registers whose lifetimes do not
overlap can be collapsed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Clock cycles

R1

R2

R3

R23

R40

