ECE 428 Programmable ASIC Design

Design Example 2.
Halftone Pixel Image Converter

Haibo Wang
ECE Department
Southern Illinois University
Carbondale, IL 62901

1-1

Background

[Image to be processed consists of 6x8 pixels.
1 Each pixel is represented by an 8-bit data (black and white image).

[In the conversion, there are five values associated with a pixel.

— Assume the pixel is located at the / column and j” row

e PV(,)) : pixel value 8-bit input

e CPV(i,)): Corrected pixel value 8-bit intermediate value
e e(i,)): error of the pixel 8-bit intermediate value
e E av(i,)): Average error 8-bit intermediate value
e HTPV(i,j): Halftone pixel value 1-bit output

1-2

Calculation of Average Error

Equation for calculating E_av

woee(i—1 j)+w,ee(i—-1 j-1)+w,ee(i,j-1)+w,ee(i+1, j-1)
W, + W, + W, + W,

E _av=

{0y =1 byl

(i -

(

Floyd-Steinberg Algorithm

For each pixel

CPV = PV(i,j) + E_av;

if CPV < CPV_thresh
HTPV(i,j) = O;
e(i,j) = CPV;

else
HTPV(i,j) = 1;
e(i,j) = CPV-CPV_max

4

(CPV_thresh=128 & CPV_max=255)
1-4

Pseudo-code

for(k=1;k<N;k++) {Err[k][0]=0;}

for(k=0;k<=M;k++) {Err[0][k]=0;Err[N+1][0]=0:;} //boundary initialization
for(j=1; j<M; j++)

{

for(i=1;i<N;i++)

{

1])/16§_av:(7*5rr[i-1][JII*Err[i-110j-11+5*Err[il[j-1]+3*ErrLi+11[j-
CPV=PV[il[jFE_av;
CPV_round=(if CPV<T then O else 255); //T is thresh=128;
HTPV[il[jl=if(CPV_round==0 then O else 1);
Err[i][j]=CPV-CPV_round;

1-5

Implementation 1

O Using 48 identical processing unit

Critical
« path

1-6

Design of Pixel Processing Unit

— Err_1=7:0> Err_0<7:0> —
— Err_2<7.0>
|:> —— Err_3=<7:0=
— Err_4<7.0=>
— PV=T.0> HTFY ——

1-7

Design summary of Implementation 1

O High hardware cost

O Demand high memory throughput (or multiple-port memory)
O Slow performance (critical path delay is 14*t,)
O Straightforward design

O No control logic

1-8

Implementation 2

1 Using a single processing unit to
sequentially process each pixel

(1 Using register file to store
Intermediate data during
processing

1 Control and address generation
circuits determine where to load
data and which pixel to be
processed

O Total processing time 48*t,

PV(i.j)

»

HTPV(,))

Memory

e: e(i-1,)); e,: e(i-1,j-1);

e3: e(1,J-1); e,: e(i+1,)-1);

1-9

Register File Design

1 Register file does not have to contain 48 registers since not all
Intermediate date need to be stored during the same time period.

e Assuming that the processing order is 1, 2, 3, ... to 48

e After pixel 10 is processed, error of pixel is not needed.
Hence, register for e, can be released for e,

@
©

N

@

® @

%)

e Only 9 registers are needed

Neighbor for computing pixel 11

ONORORO,

1-10

Register File Design

1 Using 9-to-1 multiplexers and 1-to-9 demultiplexer is straightforward
design approach. However, it results in large hardware and slow
performance

Register

e(i-1,j)

=

> e(i-1,j-1)

e(iJ-1)

e(i.j) 4{ :

e(i+1,j-1)

b

1-11

Register File Design

(1 A better design approach is to use shift-register based approach

O—>

™S

|

|, e(i+1,j-1)

- (i j-1)

j—» e(i-1,j-1)

™S

— e(i-1,))

1-12

Register File Design

O IHlustration of the operation

/

0—>

\

/

™S
oMl 53— o Bl o)

First clock cycle Pixel 1 Second clock cycle Pixel 2 1-13

\

Register File Design

O IHlustration of the operation

/

0—>

\

RN
€3 > €
0> -

Third clock cycle Pixel 3 8th clock cycle Pixel 8 1-14

O IHlustration of the operation

€9

Register File Design

™S

_>e

O—>

O—>

—

-
o

9th clock cycle Pixel 9

/

0—>

\

o
v
o

€17

0

v
o

17th clock cycle Pixel 17

1-15

Implementation 3

[Using four processing units Register

1 Ideally, we want the computation
of the four processing units are
carried out simultaneously.
Hence, the clock cycle equal
the delay of one processing
unit.

Memory

1 Which is the best order of
computation?

A\ 4

1-16

Computation order in Implementation 3

O The straightforward solution does not leads to optimal performance.

First clock cycle Second clock cycle

__

Third clock cycle

» In the above approach, the computation for pixel 4 can be started
only if the computation for pixels 1, 2, and 3 are complete.

» The clock cycle Is 4*t,,,

1-17

Computation order in Implementation 3

 The best computation order is determined by data dependence in the
the given application.

 An easy method to find data dependence is to use data flow graph
] Data flow graph (DFG) of the halftone pixel converter:

DFG can be simplified
by removing edges
across multiple levels

g LN

1-18

Computation order in Implementation 3

1 Optimal computation schedule according to data dependence

Time slots

is

I

Iy

g

I

Iis

g

L5

L4F

s B 1234|5678 |15516]| 23|24

=]

2B 9 11971t 121 P18 [ad fei | 5750 f 3t ag

g P, 17|18 19 |20 |27 28 | 35 | 36 | 37 | 28 | 35|40

25

26

33

34

41

47

48

O It take 18 clock cycles to

convert a frame

O If multiple frames to be

processes, some parts

of the computation can
be overlapped. Thus,
it takes 12 cycles to

convert a frame

1-19

O In order to find the number of registers needed, we can find the
the lifetime of each register. Registers whose lifetimes do not
overlap can be collapsed.

Register File Design

2 | 3 |4-| 5 | 6

Clock cycles

7

8

9

10

11

12

13

14

15

16

17

18

1-20

