Measuring Waveform Values Using an Oscilloscope

Scope Measurement Learning Objectives

- In this lesson you will:
- what measurements an oscilloscope can make.
- how to interpret an oscilloscope display.
- how to measure signal amplitudes.
- how to measure signal frequency.
- see phase shift of waveforms.
- measure the phase shift between two waveforms.

What Is an Oscilloscope?

An oscilloscope is an instrument that graphs electrical waveforms

Oscilloscope Measurements

Period and voltage values of signal waveforms
Frequency of oscillating signals
Circuit operation represented by signal waveforms
Phase shift of one circuit signal relative to another signal
If a malfunctioning component is distorting a signal
How much of a signal is ac and how much is dc.
Circuit noise levels

Making Voltage and Time Measurements with Oscilloscope

Vertical axis (Voltage)
Scale set in volts/division (volts/div)

Horizontal axis (Time)
Scale set in seconds/division (sec/div)

Making Voltage and Time Measurements with an

 Oscilloscope-Peak and Peak-to-Peak VoltageExample:
Time axis $1 \mathrm{mS} /$ div
Voltage axis 2 V/div
Find peak voltage
$\mathrm{V}_{\mathrm{p}}=2.2 \mathrm{div}(2 \mathrm{~V} / \mathrm{div})$
$\mathrm{V}_{\mathrm{p}}=4.4 \mathrm{~V}$ peak
Find peak-to-peak Value
$\mathrm{V}_{\mathrm{pp}}=4.4 \operatorname{div}(2 \mathrm{~V} /$ div $)$
$\mathrm{V}_{\mathrm{pp}}=8.8 \mathrm{~V}$ peak-to-peak

Making Voltage and Time Measurements with an Oscilloscope-Period and Frequency

Example:
Time axis $1 \mathrm{mS} /$ div
Voltage axis $2 \mathrm{~V} / \mathrm{div}$
Find period of signal
$\mathrm{T}=5.2 \operatorname{div}(1 \mathrm{mS} / \mathrm{div})$
$\mathrm{T}=5.2 \mathrm{mS}$
Find frequency of signal

$$
\begin{aligned}
& f=\frac{1}{T} \\
& f=\frac{1}{5.2 \times 10^{-3} \mathrm{~S}} \approx 192 \mathrm{~Hz}
\end{aligned}
$$

Making Voltage and Time Measurements with an Oscilloscope-Phase Shift

Example:
Time axis $1 \mathrm{mS} /$ div
Voltage axis $2 \mathrm{~V} /$ div

Find phase shift between WFı and WF2 (WFı reference)
$\mathrm{t}_{\mathrm{p}}=1.0 \operatorname{div}(1 \mathrm{mS} / \mathrm{div})$
$\mathrm{t}_{\mathrm{p}}=1.0 \mathrm{mS}$
$\phi=\left(\frac{t_{p}}{T}\right)(360)$
$\phi=\left(\frac{1.0 \mathrm{mS}}{5.2 \mathrm{mS}}\right)(360)=69.2^{\circ}$

©

Measuring Waveform Values Using
 an Oscilloscope
 End Lesson 11 EET 150
 Coming Next: Oscilloscope Controls

