Simple Circuit Analysis Ohm's Law

Lesson 6

EET 150

Ohm's Law Learning Objectives

\lrcorner In this lesson you will see:
the mathematical relationship between voltage, current and resistance call Ohm's Law.

- the Ohm's Law circle and use it to find the three forms of the formula

」 examples using Ohm's Law to find voltage, current and resistance
」 the linear mathematical relationship between voltage and current
\lrcorner the relationship between current and resistance is non-linear

- low resistance causes current to increase quickly

Ohm's Law

Ohm's Law - a mathematical formula that relates voltage, current and

1.) $E=I R$
2.) $R=\frac{E}{1}$

3.) $I=\frac{E}{R}$

Resistance

Ohm's Law Example Calculations

A An electric heater draws 7 A from a 120 V dc source. What is the resistance of the heater coil?

$$
\begin{aligned}
& R=\frac{E}{l} \\
& R=\frac{120 \mathrm{~V}}{7 \mathrm{~A}}=17.14 \Omega(\mathrm{Ohms})
\end{aligned}
$$

Ohm's Law Example Calculations

\square A water heater has a resistance of 10Ω. What current will it draw from a 120 V dc source?

Ohm's Law
 Example Calculations

」 An iron draws 15 A and has a 5 ohm heating element resistance. What is the supply voltage to the iron?

$$
\begin{aligned}
& E=I R \\
& E=(15 A)(5 \Omega)=75 V
\end{aligned}
$$

Ohm's Law Voltage-Current Relationship

Voltage is proportional to current (Linear relationship)

$$
E=R I
$$

$$
y
$$

As current, lincrease
voltage, v increase
proportionally.

Ohm's Law Current-Resistance Relationship

Current, I, is inversely proportional to, R, Resistance

$$
\mathrm{I}=\mathrm{V}\left(\frac{1}{\mathrm{R}}\right)
$$

As resistance decreases
current increases quickly
Note: $\mathrm{R}=0$ is short circuit

End Lesson 6 EET 150
Coming Next: Basic Electric Circuits-Series Connections

