ET 438a
Continuous and Digital Control Integral Process Homework

A tank is drained by a pump that removes liquid at a fixed rate of $0.027 \mathrm{~m}^{3} / \mathrm{sec}$. The full scale flow rate of the pump is $0.075 \mathrm{~m}^{3} / \mathrm{sec}$. The tank has a diameter of 5 meters and is 7.5 meters high. This height is considered the full scale level that the tank can hold. The current level $(t=0)$ in the tank is 35% of it full scale value. The input flow rate into the tank varies due to system demand and is modeled with the following equation:

$$
\mathrm{q}_{\mathrm{in}}(\mathrm{t})=0.0097 \sin (0.25 \mathrm{t})+0.022 \mathrm{~m}^{3} / \mathrm{sec}
$$

Assuming that $\mathrm{q}_{\text {out }}$ is constant find: 1.) percent q_{in} in terms of full scale pump flow, 2.) the integral time constant for the system, Ti, 3.) a function that gives the tank height as a function of time, $h(t)$, with the initial height of liquid level set at $t=0$. 4.) Find the height of liquid in the tank after 5 minutes has elapsed from $t=0$.

