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ET 438a 
Automatic Control Systems Technology 

Laboratory 5 
Control of a Separately Excited DC Machine 

 
Objective: Apply a proportional controller to an electromechanical system and 

observe the effects that feedback control has on system performance.  
Model an electromechanical system using differential and algebraic 
equations.  Determine the steady-state and dynamic performance of a 
torque-controlled permanent magnetic dc motor with different controller 
parameters.  Observe the effects of feedback control on motor-generator 
system that is subject to external disturbances. Apply a proportional-
integral controller to the motor-generator system above and compare the 
performance to a proportional controller. 

 
Theoretical Background 
 
Previous labs demonstrate that the response of a system is modified by negative 
feedback control.  The response speed of the system is increased as the proportional 
gain on the system increases.  This was demonstrated using an electrical analog for a 
process.  This section of the circuit represented a first order lag process.  This lab 
introduces a commonly used final control element and uses it in the proportional 
controller designed from the previous experiment. 
 
The separately excited dc motor is widely used in process industries as an actuator.  
This machine has a linear model if no saturate is assumed.  Motor speed, torque or 
power can be controlled to meet a number of industrial applications.  This lab uses 
small permanent magnet dc machines in motor, speed sensing, and generator 
applications.  This is equivalent to a larger separately excited machine that has a 
constant field current. 
 
The schematic model of a separately excited voltage controlled dc machine is shown in 
Figure 1.  For armature voltage control the speed of the motor is proportional to the 
armature voltage assuming that there is no saturation of the field. The electrical 
parameters of the circuit are the armature resistance Ra, the armature inductance, La 
and the counter emf, eb.   The value of eb is proportional to the speed of the motor for 
linear operation.  The proportionality constant is called the back emf constant, Ke. This 
can be found from test or in the manufacturer's data sheets. 
 
 
Writing a KVL equation around the armature circuit gives the steady-state response for 
the armature.  

 aaab RIee ⋅−=  ( 1) 
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Where 

 meb Ke ω⋅=  ( 2) 
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Figure 1.  Separately excited dc motor model. 

 
The steady-state speed of the motor is found by combining Equations 1 and 2. 
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The steady-state developed motor torque depends on the strength of the magnetic field 
flux and the armature current.  This is also a linear relationship if no saturation is 
assumed in the magnetic circuits.  Since the motor magnetic flux is constant, the motor 
torque is linearly related to the armature current through the proportionality constant KT.  
 

 aTd IKT ⋅=  ( 4) 

For motor speed to remain constant, the motor load torque, TL must be equal to the 
motor developed torque plus any rotational loss torque. 
 

 dfL TTT =+  ( 5) 

Since the developed torque of the motor is proportional to the armature current, 
equations 3 and 4 can be combined to give an equation that relates the armature 
current to the load torque, 
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 faTL TIKT −⋅=  (6) 

where Tf is the frictional torque of the machine.  Since all practical machines have non-
zero values of Tf, an unloaded motor must draw at least enough current to overcome its 
rotational losses.  The motor's no-load speed will depend on the mechanical 
parameters. 
 
The mechanical parameters of the dc machine are the viscous damping of the motor Bm 
and the rotational inertia of the motor armature, Jm. The value of Jm and the armature 
acceleration determine the inertial torque that the machine must overcome while the 
value of Bm relates the dynamic friction to the armature speed.  
 
The dynamic equations of the machine are differential equations that relate the 
electrical inputs to the developed torque and speed of the motor.  When arranged in the 
form shown below they are called state equations.  State equation formulations are 
more flexible than transfer function models because that allow non-zero initial conditions 
and produce the time function solutions directly when solved by computer. 
 

 

(b)    
J

T
)t(

J

B
)t(i

J

K

dt

)t(d

(a)   
L

)t(e
)t(

L

K
)t(i

L

R

dt

)t(di

mL

L
m

mL

mL
a

mL

Tm

a

a
m

a

e
a

a

aa

−ω⋅−⋅=
ω

+ω⋅−⋅−=

 ( 7) 

Where   Ra = the motor armature resistance 
   La = the motor armature inductance 
   ea = the motor armature voltage 

   ωm(t) = the motor speed (rad/sec) 
   BmL = the total motor/load viscous friction coefficient (N-m-s/rad) 
   JmL= the total motor/load rotational inertia (N-m-s2/rad) 
   Ke = back emf constant (V-s/rad) 
   KT = torque constant (N-m/A) 
   TL = motor load torque (N-m) 
 

In this formulation of the motors dynamic response the variables ia(t) and ωm(t) are 
called state variables.  The inputs to the system are the armature voltage, ea(t) and the 
motor load torque, TL. Equation 7a describes the electrical dynamics of the motor and 
equation 7b the mechanical dynamics.  Solving these equations using appropriate 
computer routines will give plots of the responses of the motor speed and armature 
current.  These variables completely describe the response of the motor. 
 
Torque-controlled Current-fed Dc Machines  
 
In the state equation model of a dc motor above, the motor speed is controlled by 
changing the armature voltage.  For this experiment a current source will supply the 
machine.  This will simplify the modeling equations.  Figure 2 shows the schematic for a 
current source dc motor. 
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Figure 2.  Current driven dc motor model. 

 
In this schematic, an ideal current source delivers current to the motor armature.  A KVL 
equation around the armature loop is not necessary to find the armature current since it 
is the same as the source current Is.  The only equation necessary to describe the motor 
dynamics is a torque balance at the armature. 
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 ( 8) 

The terms on the left-hand side of the equation represent the inertial torque, the viscous 
friction torque, and the motor load torque.  These torques must equal the developed 
armature torque. 
 
The armature current and the viscous friction coefficient determine the speed of the 
current-fed dc motor.   At equilibrium there is no acceleration so the derivative in 
equation 8 is zero.  This gives the relationship for speed as a function of the armature 
current. 
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Where    ωm = the motor armature speed. (rad/sec) 
    Bm = the motor viscous friction coefficient. 
    TL = load torque 
 
If the motor is unloaded then TL is zero and the value of Bm limits the motor speed to the 
no-load value.  The armature current must be set to a value that will produce at least the 
friction torque, Tf or there will not be enough torque developed to start the motor 
spinning.  Increasing the value of Ia above the no-load current will cause the armature to 
accelerate until it reaches a new steady-state speed.  Additional mechanical load can 
then be applied until TL = KTIa.  If more torque is required by the motor but the armature 
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current remains fixed then the motor will stall.  The armature current must increase to 
meet the torque demand placed on the motor. 
 
The block diagram show in Figure 3 shows how the armature current and load torque 
act as inputs to the mechanical system comprised of the motor armature and its load. 
 

KT

-
+

Td(s)Ia(s)

TL

mLmL BsJ

1

+

Ωm(s)

 
 

Figure 3.  Block Diagram of a Current Driven Dc Motor with an External Load. 

 
The motor load combination is a first order lag process with a time constant that is given 
by JmL/BmL. The total rotational inertia is JmL and total viscous friction is BmL. 
 
Tachogenerator Model 
 
The speed of a dc machine can be measured with a dc tachometer.  A dc tachometer is 
a permanent magnet dc generator that is connected to the same shaft as the drive 
motor.  The output voltage of the dc generator under constant load is proportional to the 
generator shaft speed.  The time domain and Laplace equations for this device are: 
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where    kt = the tachogenerator constant (V-s/rad) 
    vt(t) = the tachogenerator output voltage (V) 

    ωm(t)= motor armature speed (rad/sec) 
 
It may be necessary to scale the output of a tachometer to reduce the span of its output.  
OP AMP scaling circuits, similar to those in Lab 1, can scale the tachometer's output to 
any practical range. 
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Dc Motor Current Drive Circuit 
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Figure 4.  Typical Dc motor Current Dive Circuit Using a unity Gain Follower. 

 
Figure 4 shows a dc motor mechanically coupled to a dc tachometer and a permanent 
magnet generator.  The motor is connected between a 38 Vdc supply and a current 
sinking transistor, Q2.  The resistor Ra represents the dc resistance of the motor 
armature and is not an external component.  The diode D1 protects Q2 from inductive 
voltage transients.  The armature current of the motor is set by the base current of Q2 
when the transistor is operated in the active region.  The dc current gain of Q2 relates 
the base current to the armature current of the motor. 
 

 bFEa IhI ⋅=  

 
As long as the transistor is in the active region, this relationship is valid.  If base current 
is increases until Q2 saturates, the collector-to-emitter voltage, Vce will drop to 
approximately 0.2 V and Ia will become independent of the base current.  For analog 
control of the motor the transistor must remain in the active region. 
 
The base current of Q2 depends on the value of R2 and the voltage developed at the 
emitter of Q1.  The value of R2 is set to limit the base current into Q2 when the emitter 
voltage of Q1 is at its maximum value. The value of R2 should still be low enough to 
produce collector currents that drive the motor to its rated loading. 
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The OP AMP U1 and Q1 form a voltage follower circuit that has greater current output 
capabilities than the OP AMP alone.   This is done to make certain that the power 
transistor Q2 can be driven over a wide range of current outputs when hFE is low. The 
resistor R1 limits the collector current of Q1 to safe values.  This collector current is 
approximately equal to the emitter current which drives the base of Q2.   The resistor 
R3 is also a current limiting resistor but in this case for the base of Q1.  The 
potentiometer, R4 controls the emitter voltage at Q1 which controls Ia of Q2.  The 
proportional controller output is connected here when the system is constructed. 
  
The armature current as a function of the emitter voltage is given below. 
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where   Ve = the emitter voltage of Q1 
   Vbe = the base to emitter voltage of Q2 in active region (0.7 V) 
   hFE = the dc current gain of Q2 (from data sheets) 
 
The value of R2 is set to allow a maximum value of Ia when Ve is maximum. When these 
maximums are specified, the a linear function with input Ve and output Ia results. Since 
the OP AMP and Q1 are connected as a voltage follower circuit, the  input control 
voltage Vc will equal Ve. 
 
Separately Excited Dc Generator Model 
 

 

Figure 5.  Separately Excited Dc Generator Model. 

 
Figure 5 shows the schematic of a separately excited dc generator.  A permanent 
magnet dc motor acts as a separately excited dc generator if it is coupled to a source of 
mechanical power.  The source of mechanical power is called the prime mover of the 
generator.  When the generator is not connected to an electrical load the prime mover 
supplies enough power to overcome the rotational losses of the generator.  If the 
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generator is driven at a constant speed then the rotational power losses can be 
expressed as a frictional torque just as in the motor case. 
 
As electrical load is applied to the machine additional torque must be supplied by the 
prime mover or the speed of the system will decrease.  The steady-state power balance 
at the armature of the generator is given as: 
 

 aad IE
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
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 π
⋅⋅  ( 12) 

where  Td = the torque developed at the armature (N-m) 
  n = armature speed (RPM) 
  Ea = induced armature voltage (V) 
  Ia = armature current (A) 
 
The left-hand side of the equation is the mechanical power input and the right-hand side 
is the total electrical power output.  The power transferred to the load is the armature 
power given in Equation 12 minus the power losses of the armature resistance. 
 
If Ia and Vt are measured and the value of armature resistance, Ra is known, the 
developed torque is given by Equation 13. 
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This relationship shows that if speed is held constant then the torque developed in the 
prime mover must increase.  Increases in load occur when more resistors are 
connected in parallel across the generator terminals.  This causes an increase in Ia 
which also increases the losses due to armature resistance. 
 
The induced voltage is proportional to the armature speed for a separately excited 
generator.  The emf constant of the generator gives the relationship between the prime 
mover speed and the induced voltage.  
 

  nKE ea ⋅=  

 
The dynamic equations for the separately excited generator are shown in state variable 
form.  These equations assume that the prime mover is a separately excited dc motor. 
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where   ωg(t) = generator armature speed (rad/sec) 
   iam(t) = motor armature current (A) 
   ia(t) = generator armature current (A) 

   Ra = generator armature resistance (Ω) 
   La = generator armature inductance (H) 

   RL = load resistance (Ω) 
   Ke = generator emf constant (V-s/rad) 
   KT = motor torque constant (N-m/A) 
   Jg = generator rotational inertia (N-m-s2/rad) 
   Bg = generator viscous friction coefficient (N-m-s/rad) 
   vT(t) = load terminal voltage 
 
Equation 14a describes the mechanical dynamics of the generator.  The prime mover 
armature current is considered an input to the system.  This set of equations can be 
combined with the model for the current driven dc motor to give an overall response of 
the system.  Equation 14b represents the electrical dynamics of the generator armature 
circuit.  The load is considered to be a fixed resistance.  Equation 14c is the output 

equation that relates the state variables ωg(t) and ia(t) to the output. 
 
Design Project I – Proportional Control of a Dc Motor-Generator System 
 
1.) Construct the voltage-to-current converter shown in Figure 4 using the values 

shown in the schematic.  The 2N3055 (TIP41C) power transistor should be 
mounted on a heat sink.  Use two power supplies to derive the voltage sources for 
the circuit. One supply will provide the 38 Vdc for the motor only.  The other supply 
will provide the voltages for the controller and current converter circuits.  Set the OP 

AMP supply for ±15 Vdc. 
2.) Test the circuit by connecting it to the motor-generator test setup provided.  It 

consists of 3 identical permanent magnet motors with coupled shafts. The machine 
parameters are: 

 
    Ke = 0.06398 V-sec/rad 
    KT = 0.06426 N-m/A 
    Ra = 22.6 ohms 
    La = 0.0144 H 
    Bm = 10.745x10

-6 N-m-s/rad 
    Jm = 3.39x10

-6 N-m-s2/rad  
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Assume that all three machines are identical so the above parameters describe all 
machines mounted on the test setup. 
 
One of the machines will be driven by the voltage-to-current converter circuit while 
another machine will function as a dc tachometer to measure the speed of the 
motor. The last machine will be connected as a dc generator. Initially the generator 
will operate with no-load.  The functional block diagram of the desired system is 
shown in Figure 6. 
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Figure 6.  Block Diagram of the Motor-Generator Control System. 

 
Test the combination of the voltage-current driver and motor-generator-tachometer 
system by applying different values of input voltage, Vc, to the OP AMP U1 using 
the potentiometer.  Record the values of motor armature current Ia, tachometer 
output voltage Vt, Q2 collector-to-emitter voltage, VCE2 and the generator output 
voltage.  Make the measurements for the following values of Vc shown in Table 1-A.  
Determine the value of Vc that just causes the armature to turn (between 160 
and180 mA of armature current) when there is no-load connected to the generator. 
Record this data in Table 1-B. 

3.) Modify the difference amplifier and proportional controller from the Experiment 2 so 
that a bias voltage produces a Vc that just causes the motor armature to spin.  The 
feedback signal to the difference amplifier and the set-point voltage signals should 
be disconnected and both inputs to the difference amplifier grounded when testing 
this circuit modification.  Grounding the inputs is equivalent of having zero error. 

4.) Unground the set-point input to the difference amplifier and connect it to the wiper 
arm of a potentiometer that gives 0-5 Vdc output. With the motor armature current 
set to the value found in step 3 by the proportional controller bias, Adjust the output 
of the set-point potentiometer and measure the voltage output of the tachometer.  
Adjust the set-point value until the tachometer output reads 12.06 Vdc. Using a 
voltage divider circuit and an OP AMP voltage follower circuit, scale the tachometer 
output voltage to be equal to 2.5 Vdc. 

5.) De-energize the whole system and set the value of Kp to 2.  Disconnect the inputs 
of the difference amplifier from ground and connect them to the set-point value and 
the feedback signal supplied from the scaling circuit.  Set the set-point voltage to 
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2.5 Vdc and energize the whole system.  Measure the motor armature current Ia, 
the controller output Vc, the feedback signal voltage, Vm, the error voltage Ve, and 
the tachometer output voltage Vt.  For the set-point voltages shown in Table 2-A  
Estimate the motor speed, nm, by dividing Vt by the tachometer constant, Ke=0.0067 
V/RPM, and also record this in Table 2-A. 

6.) Set the set-point value to 2.5 V. Connect a 1000 ohm 1/2 watt resistor across the 
generator terminals with the proportional controller in operation. Measure Ia, Vc, Vm, 
Ve and Vt again. Record this data in Table 2-B. Parallel 1000 ohm resistors to get 
the remaining loads in Table 2-B and record the results for each value of RL. 

7.) Repeat steps 5 and 6 with values of Kp set to10 and 50.  Enter the data for Kp=10 
into Tables 3-A and 3-B.  For Kp=50 enter the data into Tables 4-A and 4-B. 

 
Include all the data collected from the tests on the system in the report. Also derive a 
closed loop transfer function for the system with the set-point voltage as the input and 
the generator terminal as the output using Kp=2 and RL=1000 ohms. The block 
diagrams for this system and the derived equations are in Appendix A of this handout.  
 
Using the data in Tables 2-A, 3-A, 4-A, produce three plots of the set-point voltage, Vsp, 
(x) vs. the error voltage, Ve, (y).  In the laboratory report, comment on how increasing 
the proportional gain affects the speed error.  Also, produce three plots using the data in 
Tables 2-B, 3-B, 4-B of the generator load resistance, RL, (x) vs. the motor speed, nm, 
(y).  Discuss how the motors speed is affected by the load change with the controller in 
operation.  Compare the performance with an uncontrolled system. 
 
Design Project II – Proportional-Integral Control of a Dc Motor-Generator System 
 
Proportional control gives fast response but requires high gains to achieve small values 
of steady-state error.  Applications that need more precise control can employ a 
proportional-integral (PI) controller.  Figure 7 shows an OP AMP implementation of a PI 
controller. 
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Figure 7.  Proportional-Integral Controller Using a Single OP AMP 
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The transfer function of this controller is: 

 







+=

sCR

1

R

R

)s(V

)s(V

121

2

e

c  ( 15 ) 

Equation (15) assumes that R3=R4. The ratio of R2 and R1 sets the proportional gain and 
the capacitor and R2 set the integral action rate.  The reciprical of the integral action rate 
is the time required for the integral mode to match the change in output produced by the 
proportional mode.  The proportional gain is defined in terms of the OP AMP 
parameters as 
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Disconnect the proportional controller from the feedback loop and substitute a PI 

controller that has the following parameters:  Kp=2 and KI=213 sec
-1. Let C1=0.01µF for 

this calculation and find values for R1, R2, R3, and R4.  Figure 8 shows a block diagram 
of the motor-generator system with the PI controller added. 
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Figure 8.  Motor Control Using Proportional Integral Controller. 

 

1.) With the controller design from above installed in the control loop, vary the set-
point voltage over the range shown in Table 5-A, and make all the necessary 
measurements to fill the table. 

2.) Adjust the set-point to 2.5 V dc and add the generator load resistors listed in 
Table 5-B.   Make all necessary measurements to fill the table. 

3.) Set Kp=10 and maintain KI=213 sec
-1.  Vary the set-point with no load resistor 

connected and record the data in Table 6-A. 
4.) Adjust the set-point to 2.5 V dc and add the generator load resistors listed in 

Table 6-B.   Make all necessary measurements to fill the table. 
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Using the data in Tables 5-A and 6-A, produce two plots of the set-point voltage, Vsp, (x) 
vs. the error voltage, Ve, (y).  In the laboratory report, comment on how increasing the 
proportional gain affects the speed error and how the integral action changes the 
system performance.  Also, produce two plots using the data in Tables 6-B, 6-B, of the 
generator load resistance, RL, (x) vs. the motor speed, nm, (y).  Discuss how the motors 
speed is affected by the load change with the PI controller in operation.  Compare the 
performance with an uncontrolled system and the proportional only controller. 
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Appendix A 

Block Diagrams for Lab 5 
 
The block diagram below describes the signal flows of torque-driven dc generator used 
in the lab. 

+
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Figure 9.  Block diagram of Generator. 

 
The parameters have the following definitions: 
 
 Td(s) = mechanical torque developed by the prime mover 
 Tg(s) = counter torque developed by the generator 
 JmL = the rotational inertia of the motor and generator 
 BmL = the viscous friction of the motor and generator 
 Ke = generator emf constant 
 La = generator armature inductance 
 Ra = generator armature resistance 
 RL = load resistance 
 KTg = generator torque constant 

 Ωmg(s)= shaft speed of motor-generator 
 IL(s) = generator load current 
 VL(s)= generator terminal voltage 
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When the speed feedback control is added the following block diagram results: 
 

+
- mLmL BsJ

1

+ Ke
)RR(sL

1

Laa ++

KTg

RL

VL(s)

IL(s)Eg(s)

Tg(s)

Ωmg(s)
Td(s)

KVI KTm

Kt

KP

Ks

+
-

Vm(s)

Vsp(s)

Im(s)Vc(s)

 
 

Figure 10.  Overall system block diagram. 

 
The parameters and signals are defined below. 
 
 
  Vsp(s) = system control setpoint value 
  Vc(s) = controller output voltage 
  Im(s) = motor armature current 
  Kt = tachometer voltage constant 
  Ks = voltage scaling circuit constant 
  KVI = voltage-to-current converter gain (hFE/R2) 
  KTm = motor torque constant 
  KP = controller proportional gain 
 
The overall transfer function is found using the formula below: 
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Table 1-A 

Vc (Vdc) VCE2 (Vdc) Vt (Vdc) Ia (mA) 

0.0    

1.0    

1.5    

2.0    

2.5    

3.0    

3.5    

4.0    

5.0    

6.0    

 
Table 1-B Starting Current Values 

Ia (mA) VCE2 (Vdc) Vt (Vdc) Vc (Vdc) 

    

 
 
 

Table 2-A 
 Kp =2,  RL=infinity 

Vsp (Vdc) Vt (Vdc) Vm (Vdc) Ve (Vdc) VC (Vdc) nm(RPM) 

0.5      

1.0      

1.5      

2.0      

2.5      

3.0      

3.5      

4.0      

4.5      

5.0      

 
 

Table 2-B 
Kp=2, Vsp=2.5 Vdc 

RL (Ω) Ia (mA) Vt (Vdc) Vm (Vdc) Vc (Vdc) VL(Vdc) nm (RPM) 

1000       

500       

250       

125       
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Table 3-A 
 Kp =10,  RL=infinity 

Vsp (Vdc) Vt (Vdc) Vm (Vdc) Ve (Vdc) VC (Vdc) nm(RPM) 

0.5      

1.0      

1.5      

2.0      

2.5      

3.0      

3.5      

4.0      

4.5      

5.0      

 
 

Table 3-B 
Kp=10, Vsp=2.5 Vdc 

RL (Ω) Ia (mA) Vt (Vdc) Vm (Vdc) Vc (Vdc) VL(Vdc) nm (RPM) 

1000       

500       

250       

125       

 
 

Table 4-A 
 Kp =50,  RL=infinity 

Vsp (Vdc) Vt (Vdc) Vm (Vdc) Ve (Vdc) VC (Vdc) nm(RPM) 

0.5      

1.0      

1.5      

2.0      

2.5      

3.0      

3.5      

4.0      

4.5      

5.0      

 
Table 4-B 

Kp=50, Vsp=2.5 Vdc 

RL (Ω) Ia (mA) Vt (Vdc) Vm (Vdc) Vc (Vdc) VL(Vdc) nm (RPM) 

1000       

500       

250       

125       
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Table 5-A 
 Kp =2,  KI=213,  RL=infinity 

Vsp (Vdc) Vt (Vdc) Vm (Vdc) Ve (Vdc) VC (Vdc) nm(RPM) 

0.5      

1.0      

1.5      

2.0      

2.5      

3.0      

3.5      

4.0      

4.5      

5.0      

 
Table 5-B 

Kp=2, KI=213, Vsp=2.5 Vdc 

RL (Ω) Ia (mA) Vt (Vdc) Vm (Vdc) Vc (Vdc) VL(Vdc) nm (RPM) 

1000       

500       

250       

125       

 
Table 6-A 

 Kp =10, KI=213, RL=infinity 

Vsp (Vdc) Vt (Vdc) Vm (Vdc) Ve (Vdc) VC (Vdc) nm(RPM) 

0.5      

1.0      

1.5      

2.0      

2.5      

3.0      

3.5      

4.0      

4.5      

5.0      
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Table 6-B 

Kp=10, KI=213, Vsp=2.5 Vdc 

RL (Ω) Ia (mA) Vt (Vdc) Vm (Vdc) Vc (Vdc) VL(Vdc) nm (RPM) 

1000       

500       

250       

125       

 
 


