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EET 438a  

Control Systems Technology 

Laboratory 3 

Introduction to Control Systems Modeling with MATLAB/Simulink 

 

 

Laboratory Learning Objectives 

 

After completing this laboratory you will be able to: 

1.) Convert a given differential equation model of a mechanic system to a transfer 

function. 

2.) Use MATLAB control system toobox functions and the MATLAB program to 

determine dynamic system responses. 

3.) Determine mechanical system time response to a step function. 

4.) Compute and interpret the frequency response of a dynamic system using 

MATLAB to perform computations and plot graphs. 

5.) Use Simulink software to compute time responses of simple systems. 

 

Theoretical and Technical Background 

Modern computational packages and programs allow control systems designers to 

develop and simulate control systems without intensive hand calculations.  MATLAB is 

a popular scientific and engineering computational package that allows engineers to 

focus on technical problem solving by providing libraries of mathematical functions for 

various types of analysis.  The control systems toolbox and Simulink are MATLAB tools 

for control systems analysis and design.   

 

This laboratory introduces control system functions and a control system simulator.  An 

introduction to the MATLAB program environment shows how to use the programs 

basic functionality, create and analyze control system transfer functions, and use the 

graphical simulation capabilities of Simulink to test control system designs.  Students 

should view the online videos prior to attempting any of the analysis and design 

activities given later in this document.  Access these videos through the course website 

or through the Desire-to-Learn platform. 

 

This lab uses MATLAB and Simulink to study the dynamic response of a simplified 

automotive suspension system.  Figure 1 shows the system this lab examines.  The 

variable of interest is the centerline position of the axle that holds the tire, x(t).  The 

input to the system is the road surface y(t), which can vary independently.  We assume 

that the mass of the car body does not move with respect to the car axle.  This 
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eliminates the vertical car body motion, which simplifies the analysis.  This may not be a 

realistic assumption but gives a first approximation of the suspension performance. 
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Figure 1.  Auto Suspension System Used In Analysis.  

 

Figure 2 shows the mechanical model used for the analysis.  A mass represents the 

tire/wheel assembly and a spring with a spring constant of, K1, represents the 

“springiness” of tire.    
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Figure 2.  Mechanical Model of the Auto Suspension System 

Showing the Tire as a Spring. 
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A unit step function will represent the bump in the road surface.  Table 1 lists the model 

parameters for the initial analysis. The first step in analyzing this system is to reduce the 

system model in Figure 2 to a free-body diagram that shows all forces and their 

assumed direction.  Figure 3 shows the forces on the free-body diagram.  These forces 

must be written in terms of the axle and road surface positions.  Notice that all forces 

 

Table 1   Model Parameters 

Parameter Value  

K 1.751x105 N/m 

K1 3.5x104 N/m 

M 14 Kg 

B 536 N-s/m 

 

are written as functions of time.  Figure 3 also shows the mathematical representation of 

a bump on the road surface.  A unit step function represents a rapid change in the road 

at some time, tb, after the auto starts in motion.  The surface has a level change of 0.05 

m (5 cm). 
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Figure 3.  Free-Body Diagram and Mathematical Model of Road Bump.  

 

Summing forces with down assumed to be the positive direction gives the following 

force balance equation. 
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Now represent the forces as functions of the axle position, x(t) and the road surface, y(t) 

using the force definitions from the course lecture presentations. The force FK1(t) 

depends on the difference between the axle and the road surface. Substituting these 
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relationships into equation (1) yields a second order differential equation with an 

independent function , y(t), representing a changing road surface and the unknown axle 

position function, x(t).  Equation (2d) is the simplified version of the system model 
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showing the parameters in the differential equation.   

 

Equation (2d) is the differential equation model of the auto suspension with all 

parameter included.  Taking the Laplace transform of this equation and solving for the 

ratio X(s)/Y(s) produces the transfer function of the dynamic system.    Equation (3d) is 

the transfer function of the system for an arbitrary input for the road surface. 
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If we assume a unit step function for the road surface with a displacement of yd then the 

following derivation results. 
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Equation (4b) is the differential equation model of the auto suspension with a road bump 

represented by a unit step function that has a vertical displacement of yd. 

 

We can use equations (3d) or (4b) to determine the response of the suspension system 

by entering these functions into the MATLAB computational program.  View the tutorial 

videos to learn the basics of the MATLAB programming environment.   

 

MATLAB is a powerful programming, graphing, and computational environment used by 

scientists and engineers to solve problems that require extensive numerical calculations 

and plot results1.  It comes with an large library of functions and a dynamic systems’ 

simulation program called Simulink.  Simulink allows a user to make a block diagram 

model of a dynamic system very similar to the block diagrams covered in the lecture of 

this course.  The program then solves the block diagram and displays results with time 

plots. 

 

A user can enter MATLAB instructions at the command prompt and perform calculations 

or enter a series of commands into a text file and type the filename on the command 

prompt.  The commands in the text file form a script that MATLAB executes like a 

standard program.  The control toolbox functions of MATLAB can create a digital 

representation of a transfer function from arrays of coefficients representing the 

numerator and denominator of a derived transfer function.  

 

Appendix B lists the code used to generate the suspension response to a 5 cm abrupt 

jump in the road surface.  Entering these instructions into a text file, which is called an 

M-file (script in current terminology) in the MATLAB programming system produces a 

time response and a frequency response plot.  The program also prints the maximum 

deflection of the axle and the final position change in centimeters.  The lab will use this 

code later. 

 

Figures 4 and 5 are the step input time response and the system frequency response 

respectively.  These plots are the responses for the parameter values given in Table 1.  

The numerical results of the simulation show that the axle’s maximum displacement is 

1.34 cm and the final displacement is 0.832 cm.  Most of the surface bump is absorbed 

by the “springiness” of the tire. Figure 6 shows how this might look as the tire deforms 

due to the road surface shift.  
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Figure 6.  Suspension System after Encountering a 5 Cm Road Displacement. 

The axle of the suspension system will have a final displacement of 0.83 cm from the 

zero position referenced to the flat road surface.  The tire absorbs the remaining 4.17 

cm of the shift as it deforms to meet the new road height.  This assumes that the auto 

body does not move. 

The time plot in Figure 4 shows that the axle exhibits a damped oscillation that settles 

out by 300 mS.  The maximum displacement occurs during the first upward swing of the 

axle and has decreasing amplitudes with each successive oscillation.  Decreasing the 

damping provided by the shock-absorbers will cause the axle oscillations to last longer 

as the energy stored in the mass and the springs cannot dissipate.  With softer shocks 

the wheel will bounce for a longer time. 

The Bode plot shows there is a system resonant peak at approximately 120 rad/sec  (19 

Hz).   Any sinusoidal displacements that occur at this frequency are transmitted through 

the suspension with a gain of -31.4 dB.  The greatest axle displacements will occur at 

this frequency.  Stimulations of frequencies less than the peak pass with a gain of 

approximately -40 dB.  The system gain falls off quickly after the peak frequency.  

Disturbances with periods in this range are attenuated, so the axle will not respond to 

these higher frequency disturbances.  The axle displacement will be less since the 

gains are lower.  
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Figure 4.  Suspension System Response Due to a 5 cm Displacement in the 

Road Surface 

 

Figure 5.  Frequency Response of Auto Suspension System. 
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The frequency response plot shows how the suspension system reacts to periodic 

sinusoidal functions.  Studies show that paving machines lay road surfaces with a 

wavelength of 15.4 m (50 ft)2. The amplitude of this variation is 7.62 cm (3 in.).  Ripples 

with shorter wavelengths can occur usually of roads that have a "washboard" pattern. 

This pattern is approximately 0.308 m (1 ft). These roads have surface variations of 

smaller amplitudes in the range of 1.27 cm (0.5 in.).   

The vehicle velocity and the wavelength determine the frequency of the system input 

function.  Equation (5) is the relationship between velocity, wavelength and frequency. 

  
f

v
=  (5) 

 Where:    = the wavelength (m) 

   v  = vehicle velocity (m/s) 

  f = frequency (Hz) 

 

The Bode plots give frequency, , in radians/second.  Solving (5) for frequency and 

converting Hertz to radians/second produces equation (6). 

 

  



=

v2
 (6) 

 

Table 2 lists the paving wavelengths and two vehicle test velocities along with the 

computed values of . 

 

Table 2.  Suspension Test Frequencies 

 Wavelength (m) 

Velocity (m/s) 15.4 0.308 

27 m/s ( 60 mph) 11.06 rad/s 553 rad/s 

13.5 m/s (30 mph) 5.53 rad/s 276 rad/s 

 

Finding the intersections of these frequencies with the Bode plot in Figure 5 gives the 

suspension system gain to the specified frequencies in Decibels. Converting the dB 

value into a gain value and multiplying it by the amplitudes listed above computes the 

axle motion.  Equations (7ab) show the formulas used for this calculation.  The variable 

G is the gain of the suspension system to a given frequency.  The variable dB is the 

gain value read from the Bode plot gain response plot.  The quantity xmax is the 

maximum amplitude of the sinusoidal stimulation to the suspension system. 
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Figure 7 shows the data cursor reading for the 11.7 rad/s frequency.  The cursor in 

MatLAB figures only allows alignment with computed plot points so the gain value 

estimate is -41.5 dB.  Table 3 shows the gain values for all sinusoidal input  

 

Figure 7.  Suspension System Bode Plot Showing Data Cursor Located Near 11.7 Rad/S. 

 

frequencies.  The suspension system cannot respond to the higher frequency 

displacements.  The large negative dB values produce very small gains resulting 

Table 3.  Suspension System Frequency Response 

Frequency 
(rad/s) 

 
Gain  (dB) 

 
Gain (A) 

Maximum 
Displacement 

(cm) 

Axle 
Displacement 

(cm) 

5.53 -41.5 0.0084 7.62 0.0632 

11.70 -41.5 0.0084 7.62 0.0632 

276 -54 0.0020 1.27 0.00254 

553 -67.3 0.00043 1.27 0.00055 
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in tiny changes in axle position.  The lower frequencies produce much larger axle 

displacements.  The suspension system acts as a low-pass filter allowing a fraction of 

the sinusoidal displacements at lower frequencies to disturb the axle position while 

rejecting the higher frequencies.  Frequencies between 80 and 170 rad/s fall in the 

resonant peak and transmit greater amplitudes of displacement to the axle. 

Simulink allows users to draw a block diagram of a dynamic system and study its 

response without writing m-file scripts.  Simulink has s variety of input functions and can 

mathematical model very complex systems.  Scope-like blocks connected to signal 

paths display simulation results for user interpretation. Figure 8 shows the Simulink 

 

Figure 8. Simulink Model of Suspension System. 

model of the suspension system.  A sine wave input excites the normalized suspension 

system transfer function.  This transfer function output scale is 0-1.  The scope icon 

displays the system input and output on two separate plots since there are significant 

differences between the amplitudes. View the tutorial video presentations to learn how 

to use Simulink. 

Simulink produces numerical solutions to the differential equations describing dynamic 

systems.  All calculations assume that time is the independent variable.  The maximum 

simulation time must be set in the program to produce usable time plots.  An 

accompanying tutorial video shows how to set this parameter.  Figure 9 shows 

simulation results for a sinusoidal input 276 rad/sec with maximum amplitude of 1.27 
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cm.  After the initial transient period, the peak amplitudes closely agree with the value 

found in Table 3. 

 

Figure 9.  Simulink Scope Output for 276 rad/sec Sinusoidal Input  xmax=1.27 cm  
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Procedure 

1. Acquire a copy of the student version of MatLAB and install it on your computer. 

Alternately you can make use of the copies of MatLAB installed on computers in 

D122, and D30 on campus.  

2. Open a new m-file and enter the code listed in Appendix B. Save this file under 

the name shock.  Remember that MatLAB is case sensitive so use all lower 

case letters.  Typing this name in at the command line will run the program 

prompting the user for the required inputs.  Run the program with the parameters 

from Table 1 to check your code for errors.  The program should produce two 

plots that look like Figures 4 amd 5.   Fix any syntax errors or other code 

mistakes if they occur. 

3. Run the program for each set of parameters in Table C-1 located in Appendix C.  

Record the numerical values of the maximum axle displacement and the final 

axle displacement in the table. Cut and paste each plot the program generates 

into a Word document and save them for later analysis. 

4. Run the program for each set of parameters in Table C-2. Copy down the 

transfer function coefficients from each case and save them for future use.  Cut 

and paste the frequency response plots for each case into a Word document for 

later analysis.  Use the data cursors on the plots to determine the axle 

displacement response in dB to a road-induced vibration of 100 rad/s.   

5. Create a Simulink model using Figure 8 as a guide.  Use the transfer function 

coefficients found in step 4 above to define the transfer function block in the 

Simulink model.  The sinusoidal input should have a 2 cm peak input and a 

frequency of 100 rad/s.  Run the model simulation and record the estimated peak 

values of the output sinusoidal response in Table C-3  

6. Changes in tire pressure change the value of K1. Table C-4 lists these values of 

K1 and the other test parameters.  Use the shock program to determine the 

impact changing tire pressure has on the final axle displacement.  Save the 

transfer function coefficients computed after each program run for later use.  

Record the final displacement values the program computes and save them for 

later analysis. 

7. Change the input of the Simulink program shown in Figure 8 to a unit step 

function with a final value of 0.05 m.  Repeat step 6 using Simulink.  Estimate the 

final value of the axle from the scope plots.  Place these results in Table C-4 

also.   
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Lab 3 Assessment 

Submit the following items for grading and perform the listed actions to complete this 

laboratory assignment. 

 

1. Plot the maximum axle displacement against the shock absorber damping, B 

using the data collected in part 3 of the procedure.  Write a page describing the 

changes in the time and frequency response of the suspension as the damping 

increased.  

2. Use Equation (7) to compute the magnitude of the axle displacement, xaxle, that 

occurs for each shock damping value give in Table C-2 from the dB value 

recorded. Create a table that lists in columns the values of B, dB at 100 rad/s, G, 

axle displacement. Use a xmax value of 2 cm in Equation (7) for all cases.  Write a 

paragraph that explains the response of the system to the changes in shock 

damping. 

3. Compare the Simulink model sinusoidal peak values to those found from the 

frequency response plots that used the same parameters. Are the values nearly 

equal?  Write a paragraph that explains why these two responses are similar. 

4. Plot the final displacement values  (y-axis) found from varying  the parameter K1 

against the value of K1 (x-axis).  Write a short explanation that accounts for the 

trend in the axle displacement. 

5. Compare the results from the MatLAB program and the Simulink model.  Is there 

good agreement between the two programs? 
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Appendix A 

Lab 3 MATLAB Function Reference  

 

TF  Creation of transfer functions or conversion to transfer function.  This function 

creates a transfer function from two arrays of coefficients. 

  

   Creation: 

     SYS = TF(NUM,DEN) creates a continuous-time transfer function SYS with  

     numerator(s) NUM and denominator(s) DEN.  The output SYS is a TF object. 

 

STEP  Step response of LTI models.  This function plots the response of a system to a 

unit step input. 

  

    STEP(SYS) plots the step response of the LTI model SYS (created  

    with either TF, ZPK, or SS).  For multi-input models, independent 

    step commands are applied to each input channel.  The time range  

    and number of points are chosen automatically. 

  

    STEP(SYS,TFINAL) simulates the step response from t=0 to the  

    final time t=TFINAL.  For discrete-time models with unspecified  

    sampling time, TFINAL is interpreted as the number of samples. 

      

    STEP(SYS1,SYS2,...,T) plots the step response of multiple LTI 

    models SYS1,SYS2,... on a single plot.  The time vector T is  

    optional.  You can also specify a color, line style, and marker  

    for each system, as in  

       step(sys1,'r',sys2,'y--',sys3,'gx'). 

  

BODE  Bode frequency response of LTI models.  This function produces a Bode plot for 

a specified linear time-invarient  (LTI) system representing a transfer function. 

  

    BODE(SYS) draws the Bode plot of the LTI model SYS (created with 

    either TF, ZPK, SS, or FRD).  The frequency range and number of   

    points are chosen automatically. 

  

    BODE(SYS,{WMIN,WMAX}) draws the Bode plot for frequencies 

    between WMIN and WMAX (in radians/second). 
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INPUT  Prompt for user input.  

 

    R = INPUT('How many apples') gives the user the prompt in the 

    text string and then waits for input from the keyboard. 

    The input can be any MATLAB expression, which is evaluated, 

    using the variables in the current workspace, and the result 

    returned in R.  If the user presses the return key without  

    entering anything, INPUT returns an empty matrix. 

  

    R = INPUT('What is your name','s') gives the prompt in the text 

    string and waits for character string input.  The typed input 

    is not evaluated; the characters are simply returned as a  

    MATLAB string. 

  

    The text string for the prompt may contain one or more '\n'. 

    The '\n' means skip to the beginning of the next line. This 

    allows the prompt string to span several lines. To output 

    just a '\' use '\\'. 
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Appendix B 

M-File for Generating Step and Bode Response of Auto Suspension 

 

Note:  MATLAB is case sensitive.  (i.e.  H does not equal h) 
 

% This MATLAB script file holds a list of commands that are executed  
% in the order they are typed.  This file will produce a step response to a 
% transfer functions of the auto suspension system.  The user must enter the 
% parameters 

  
% clear all variable from memory and close all existing plots. 
clear all; 
close all; 

  

%Read all the input values. 
k=input('Enter the value of K(N/m):   '); 
k1=input('Enter the value of K1 N/m):  '); 
B=input('Enter the value of B (N-s/m):  '); 
M=input('Enter the mass of the tire and wheel (Kg):  '); 
yd=input('Enter the bump displacement in cm. Enter 0 for no bump(cm):  '); 

  
%take care of the zero entry since this parameter is in the denominator of 

the transfer function formula 
if yd==0 
    yd=1;    
else 
   yd=yd/100; %scale the bump to meters 
end 

  

%compute the coefficient values. 

  
a2=M/(k1*yd); 
a1=B/(k1*yd); 
a0=k/(k1*yd)+1/yd; 

  
%create the arrays for the TF function 
num=1;  % define the numerator and denominator arrays 
dem=[a2 a1 a0]; 
sys=tf(num,dem)   %display this on the screen by not ending the statement 

with semicolon. 
[y t]=step(sys);  % this function produces the step response 
plot(t,y); 

% these lines of code format the plot giving it a title and axis names 
title('Axle Position Change'); 
grid on; 
if yd==1    
    ylabel('Axle Position Displacement From Rest (per unit)'); 
else 
    ylabel('Axle Position Displacement From Rest (m)'); 
end 
figure;  %create an new figure for the bode plot 
bode(sys); 
grid on; 
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max_x=max(y);  % find the maximum displacement 
N=length(y);   % find the length of the array to get final value 
final_x=y(N);  % find the final value in the plot 

 
%print the numerical values to the consol. 
fprintf('\n\n');  % some line feeds to get some space 

if yd==1 

% Scale the values to per unit and print 
fprintf('The maximum axle displacement is:  %8.6f  (cm)\n',max_x); 
fprintf('The final axle displacement is:  %8.6f  (cm)\n',final_x); 
fprintf('\n\n'); 
 

else 

% Scale the values to cm and print 
fprintf('The maximum axle displacement is:  %8.6f  (cm)\n',max_x*100); 
fprintf('The final axle displacement is:  %8.6f  (cm)\n',final_x*100); 
fprintf('\n\n'); 
end 
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Appendix C 

Lab Data Tables 

 

For all cases let: 

K=175,100 N/m 

K1=35,700 N/m 

M= 14 Kg 

Bump Displacement:  5 cm 

 

 

Table C-1.  Shock Damping Test Cases 

Case 
Number 

B  (Shock Damping) 
N-s/m 

Xmax  (cm) Xfinal (cm) 

1 600   

2 800   

3 1000   

4 1200   

5 1500   

6 2000   

7 2500   

8 3000   

 

 

For all cases let: 

K=175,100 N/m 

K1=35,700 N/m 

M= 14 Kg 

Table C-2.  Frequency Responses 

Case 
Number 

B  (Shock 
Damping) 

N-s/m 

Bump 
Displacement 

(cm) 

dB  
at 100 rad/s 

1 600 0  

2 1200 0  

3 2000 0  

4 3000 0  

    xGx

           10G

maxaxle

20

dB

=

=  
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Table C-3.  Simulink Suspension Output Peak Values 

Case 
Number 

B  (Shock 
Damping) 

N-s/m 

Estimated Peak Axle 
Displacement (cm) 

1 600  

2 1200  

3 2000  

4 3000  

 

 

For all cases let: 

K=175,100 N/m 

B=800 N-s/m 

M= 14 Kg 

Bump Displacement:  5 cm 

 

 

Table C-4.  Parameter K1 Changes Due To Tire Pressure 

Case 
Number 

K1 Tire 
Spring 

Constant 

Final Axle 
Displacement (cm) 

Shock Program 

Final Axle 
Displacement (cm) 

Simulink 

1 15,000   

2 35,000   

3 40,000   

4 50,000   

 


