
HP Fortran 90 1.2 Release Notes

HP 9000 Computers

5966-9845

Printed in USA November 1997

© Copyright 1997 Hewlett-Packard Company

2

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Corporate Offices:
Hewlett-Packard Co.
3000 Hanover St.
Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Copyright © Hewlett-Packard Co. 1983-1997

Copyright © Edinburgh Portable Compilers, Ltd. 1996-1997

Copyright © UNIX System Laboratories, Inc. 1980, 1984, 1986

Copyright © The Regents of the Univ. of California 1979, 1980,1983,
1985-1990

Contents

3

1. New and Changed Features

Features Added at Release 1.1 .12
HP Fortran 90 Statements. .12

BUFFER IN Statement (Extension) .13
BUFFER OUT Statement (Extension). .16
OPTIONS Statement (Extension) .18

+Oparallel Option. .19
Compiler Directives .19

Controlling Vectorization .20
Controlling Parallelization .20
Controlling Dependence Checks. .21
Controlling Checks for Side Effects .22

MP_NUMBER_OF_THREADS Environment Variable22
Multi-Threaded Programming. .23
Large-File System Support .23

Changes as of Release 1.0 .24
PA-RISC 1.0 Architecture Not Supported. .24
Instruction Scheduling. .24
+Olibcalls Option .24
+Oregionsched Option .25
STAT= Specifier for ALLOCATE Statement. .25

2. Using HP Fortran 90

Compiling and Linking HP Fortran 90 Programs28
f90 Command Line .28
Filenames Accepted by the f90 Command .28
Compiling HP Fortran 90 Modules .29
Compile-Line Options .30

Commonly Used Options .31
f77 Options Supported by f90 .32

Compiler Directives .35

4

Contents

Environment Variables . 35
HP_F90OPTS. 36
TMPDIR . 36
TTYUNBUF . 36
NLSPATH. 37

Libraries Searched by f90. 37
Diagnostic Messages . 38
Optimization . 38

Parallelizing HP Fortran 90 Programs . 39
Compiling for Parallel Execution . 39
Performance and Parallelization . 39
Profiling Parallelized Programs . 40
Conditions Inhibiting Loop Parallelization . 40

Calling Routines with Side Effects . 40
Indeterminate Iteration Counts . 41
Data Dependencies . 41

Migrating to HP Fortran 90. 44
Migration Issues . 44

Source Code Issues . 44
Compile-Line Option Issues . 47
Object-Code Issues. 47
Data-File Issues . 48

Approaches to Migration . 48
HP-Supplied Migration Tools . 49

HP FORTRAN 77 Compiler . 49
HP Fortran 90 Compiler . 49
Lintfor. 50
Fortran Incompatibilities Detector . 50

Third-Party Migration Tools and Information 52

Incompatibilities with HP FORTRAN 77 . 54

Contents

5

Command-Line Options Not Supported .54
Floating-Point Constants .54
Intrinsic Functions .54
Statement Functions .55
Procedure Calls and Definitions .55
Data Types and Constants. .56
Input/Output. .57
Directives .57
Miscellaneous .57

Calling C Routines from HP Fortran 90. .59
Data Types .59

Logicals .60
Complex Numbers. .60
Derived Types .60

Arrays .61
Argument-Passing Conventions .61
Strings. .61
Case Sensitivity .62
File Handling .63

Writing HP Fortran 90 Applications for HP-UX65
Accessing Command-Line Arguments .65
HP-UX System Calls and Library Routines .66
Using HP-UX File I/O .67

Stream I/O Using FSTREAM .67
Performing I/O Using HP-UX System Calls 68
Establishing a Connection to the File .68
Obtaining an HP-UX File Descriptor in Fortran.68

3. Installation Information

4. Related Documentation

6

Contents

5. Restrictions, Problems, and Fixes

Locating Information on Problems and Fixes. 74

Restrictions in Release 1.2. 75

Known Problems . 77

Corrections to the Documentation. 78
OUT OF FREE SPACE Error. 78
+fp_exception Option . 78

Tables

7

Table 1-1. Compatibility Directives Recognized by HP Fortran 90 19

Table 2-1. Extensions of Filenames Compiled by f90 29

Table 2-2. Commonly Used Compile-Line Options 31

Table 2-3. f77 Options Supported by f90 32

Table 2-4. f77 Options Replaced by f90 Options33

Table 2-5. f77 Options Not Supported by f90 .34

Table 2-6. Libraries Shipped with HP Fortran 9037

Table 2-7. Libraries Shipped with HP-UX Operating System 37

Table 2-8. HP FORTRAN 77 Directives Supported by f90 Options45

Table 2-9. Data-Type Correspondence for HP Fortran 90 and C 59

8

Tables

9

Preface
This document contains the following chapters:

• New and Changed Features

• Using HP Fortran 90

• Installation

• Relevant Documentation

• Problem Descriptions and Fixes

10

11

1 New and Changed Features

The 1.2 release of the HP Fortran 90 compiler supports HP 9000
workstations and servers running on 11.0 HP-UX systems. Release 1.2
is a bug-fix release. It contains no new functionality and does not
support 64-bit code generation. HP Fortran 90 will provide support for
64-bit code generation at a later release.

The following sections of this release document describe features that
were new or changed as of the 1.1 release of HP Fortran 90. For full
information about the 1.0 release of HP Fortran 90, refer to the HP
Fortran 90 Programmer's Reference (B3908-90001).

12 Chapter 1

New and Changed Features
Features Added at Release 1.1

Features Added at Release 1.1
This section describes features that were added for the release 1.1 of HP
Fortran 90. These features are not documented in the HP Fortran 90
Programmer's Reference. They include:

• Statements to provide compatibility with other vendors' Fortran
compilers

• +Oparallel optimization option

• Compatibility directives for parallelizing and vectorizing programs

• MP_NUMBER_OF_THREADS environment variable

• Support for multi-threaded programming

• Support for large-file systems

The following sections fully describe these features.

HP Fortran 90 Statements
The following statements are supported as of release 1.1 of
HP Fortran 90:

• BUFFER IN statement

• BUFFER OUT statement

• OPTIONS statement

All of these statements are extensions to the Fortran 90 standard. They
are fully described in the following sections. For a full discussion of all
other HP Fortran 90 statements, refer to the HP Fortran 90
Programmer's Reference, Chapter 10.

Chapter 1 13

New and Changed Features
Features Added at Release 1.1

BUFFER IN Statement (Extension)
Provides compatibility with the Cray BUFFER IN statement

Syntax BUFFER IN (unit, mode) (begin-loc, end-loc)

unit
is either a unit identifier (integer expression) or a file
name (character expression).

mode
is a mode identifier (integer expression) that controls
the record position. If mode is ≥ 0, full-record
processing occurs, as in standard Fortran I/O. If mode
is < 0, partial-record processing occurs; that is, if n is
the last word that was transferred, then the record is
positioned to transfer the n+1 word.

begin-loc, end-loc
are symbolic names of the variables, arrays, or array
elements that mark the beginning and end locations of
the BUFFER IN operation. begin-loc and end-loc must
be either elements of a single array (or equivalenced to
an array) or members of the same common block.

Description The BUFFER IN statement is an HP Fortran 90 extension that provides
compatibility with the Cray BUFFER IN feature. The statement causes
data to be transferred while allowing any subsequent statements to
execute concurrently. The BUFFER IN statement is provided as a porting
aid for existing Cray code; it is not likely to produce superior
performance compared to conventional Fortran 90 I/O methods.

The following restrictions apply to the BUFFER IN statement:

• Any data format conversions specified in the OPEN statement do not
affect data read or written with the BUFFER IN statement.

• Using the BUFFER IN statement with data types less than eight
bytes in size produces a fatal compiler error. Use the +autodbl
option to increase the size of numeric and logical default data types,
as described in the HP Fortran 90 Programmer’s Reference, Chapter
13.

• Other Fortran I/O statements (for example, READ, WRITE, PRINT,
ACCEPT, and TYPE) cannot be used on the same unit as the BUFFER
IN statement.

14 Chapter 1

New and Changed Features
Features Added at Release 1.1

• The BACKSPACE statement cannot be used with files that are capable
of being transferred by the BUFFER IN statement. Such files are
referred to as pure-data (unblocked) files.

HP Fortran 90 also provides the following library routines for use with
the BUFFER OUT statement:

stat = UNIT(unit)
returns the status of a BUFFER IN operation. stat is of
type real, and unit is of type integer.

len = LENGTH(unit)
returns the number of words successfully transferred.
len and unit are of type integer.

pos = GETPOS(unit)
returns the current record number. pos and unit are of
type integer.

SETPOS(unit, pos)

sets the record number, pos, for a file. pos and unit are
of type integer. This routine cannot be used with
magnetic tape; doing so produces an error message.

These routines reside in libcl.[a|sl] and are implicitly loaded by the
linker. If you want to use them, make sure that your own routines don't
have the same names.

Example The following program shows how to use the BUFFER IN and BUFFER
OUT statements. The program must be compiled with the +autodbl
option; see HP Fortran 90 Programmer's Reference, Chapter 13.

buffer_io.f90

PROGRAM bufferedIoTest

! buffered i/o example: compile with +autodbl

 INTEGER a(10)

 OPEN (UNIT = 7, NAME = 'test.dat', FORM = 'UNFORMATTED')

 a = (/ (i,i=1,10) /) ! initialize the array a

 BUFFER OUT (7, 0) (a, a(10)) ! write out array a twice
 CALL unit (7)
 BUFFER OUT (7, 0) (a, a(10))
 CALL unit (7)

 ! set position to 40 bytes (5 integer values) into file
 CALL setpos (7, 5)

Chapter 1 15

New and Changed Features
Features Added at Release 1.1

 ! read the remainder of the 1st record, and half of the second
 BUFFER IN (7, 0) (a, a(10))

 WRITE(6,*) a
 CLOSE (7)
END PROGRAM bufferedIoTest

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 +autodbl buffer_io.f90
$ a.out
 6 7 8 9 10 1 2 3 4 5

See Also BUFFER OUT

16 Chapter 1

New and Changed Features
Features Added at Release 1.1

BUFFER OUT Statement (Extension)
Provides compatibility with the Cray BUFFER OUT statement

Syntax BUFFER OUT (unit, mode) (begin-loc, end-loc)

unit
is either a unit identifier (integer expression) or a file
name (character expression).

mode
is a mode identifier (integer expression) that controls
the record position. If mode is ≥ 0, full-record
processing occurs, as in standard Fortran I/O. If
partial-record processing is in progress, mode ≥ 0 ends
a series of partial-record transfers. If mode is < 0, the
record is left positioned to receive additional words.

begin-loc, end-loc
are symbolic names of the variables, arrays, or array
elements that mark the beginning and end locations of
the BUFFER OUT operation. begin-loc and end-loc must
be either elements of a single array (or equivalenced to
an array) or members of the same common block.

Description The BUFFER OUT statement is an HP Fortran 90 extension that provides
compatibility with the Cray BUFFER OUT feature. The statement causes
data to be transferred while allowing any subsequent statements to
execute concurrently. The BUFFER OUT statement is provided as a
porting aid for existing Cray code; it is not likely to produce noticeably
superior performance compared to conventional Fortran 90 I/O methods.
In fact, the BUFFER OUT statement will always be slightly slower than
unformatted fixed record length I/O.

The following restrictions apply to the BUFFER OUT statement:

• Any data format conversions specified in the OPEN statement do not
affect data read or written with the BUFFER OUT statement.

• Using the BUFFER OUT statement with data types less than eight
bytes in size produces a fatal compiler error. Use the +autodbl
option to increase the size of numeric and logical default data types,
as described in the HP Fortran 90 Programmer’s Reference, Chapter
13.

Chapter 1 17

New and Changed Features
Features Added at Release 1.1

• Other Fortran I/O statements (for example, READ, WRITE, PRINT,
ACCEPT, and TYPE) cannot be used on the same unit as the BUFFER
OUT statement.

• The BACKSPACE statement cannot be used with files that are capable
of being transferred by the BUFFER OUT statement. Such files are
referred to as pure-data (unblocked) files.

HP Fortran 90 also provides the following library routines for use with
the BUFFER OUT statement:

stat = UNIT(unit)
returns the status of a BUFFER IN operation. stat is of
type real, and unit is of type integer.

len = LENGTH(unit)
returns the number of words successfully transferred.
len and unit are of type integer.

pos = GETPOS(unit)
returns the current record number. pos and unit are of
type integer.

SETPOS(unit, pos)

sets the record number, pos, for a file. pos and unit are
of type integer. This routine cannot be used with
magnetic tape; doing so produces an error message.

These routines reside in libcl.[a|sl] and are implicitly loaded by the
linker. If you want to use them, make sure that your own routines don't
have the same names.

Example For an example of the BUFFER OUT statement, see the description of the
BUFFER IN statement.

See Also BUFFER IN

18 Chapter 1

New and Changed Features
Features Added at Release 1.1

OPTIONS Statement (Extension)
Changes the optimization level.

Syntax OPTIONS +On

where +On (or -On) specifies a level of optimization that is equal to or
less than the level specified on the command line. The +On and -On
options are described in the HP Fortran 90 Programmer's Reference,
Chapter 13.

Description The OPTIONS statement is an extension of HP Fortran 90 and is used to
specify a level of optimization that is equal to or less than the level
specified on the command line; if the level specified by the OPTIONS
statement is higher, it is ignored. The OPTIONS statement must be
placed outside all program units. The changed level of optimization
applies to the beginning of the next program unit and remains in effect
for all succeeding program units or until superseded by another OPTIONS
statement or by the HP OPTIMIZE directive.

The HP OPTIMIZE directive takes precedence over the OPTIONS
statement. That is, if the directive is used to disable optimization, any
subsequent OPTIONS statement has no effect until a later directive
enables optimization.

NOTE The OPTIONS statement differs from the HP OPTIMIZE directive,
which enables or disables optimization but does not change the
optimization level. For more information about the HP OPTIMIZE
directive, refer to the HP Fortran 90 Programmer's Reference, Chapter
14.

Example In the following example, the first OPTIONS statement optimizes the
subroutine go_fast at optimization level 3. The second OPTIONS
statement lowers the optimization level to 2. It is assumed that the file
that contains this code was compiled with the +O3 or -O3 option.

OPTIONS +O3
SUBROUTINE go_fast
...
END SUBROUTINE go_fast

OPTIONS +O2
SUBROUTINE not_so_fast
...
END SUBROUTINE not_so_fast

Chapter 1 19

New and Changed Features
Features Added at Release 1.1

+Oparallel Option
The HP Fortran 90 compiler supports the +O[no]parallel
optimization option. This option optimizes a program for parallel
execution.

Syntax +O[no]parallel

Description The +Oparallel option causes the compiler to transform eligible loops
for parallel execution on multiprocessor machines. This option requires
the +O3 option.

The +Onoparallel option disables parallelization for the target
program. It is the default at all levels of optimization.

If you link separately from the compile line and compile the program
with the +Oparallel option, you must link with the f90 command and
specify the +Oparallel option to link in the correct runtime support.

NOTE The +Oparallel option should not be used for programs that make
explicit calls to the kernel threads library (see Table 2-7).

For information about using the +Oparallel option to parallelize your
Fortran programs, see “Parallelizing HP Fortran 90 Programs” on
page 39. To set the number of processors that will execute your program,
use the MP_NUMBER_OF_THREADS environment variable; see
“MP_NUMBER_OF_THREADS Environment Variable” on page 22.

Compiler Directives
HP Fortran 90 supports the compiler directives listed in Table 1-1.
These directives are provided for compatibility with programs developed
on the platforms also listed in the table.

Table 1-1 Compatibility Directives Recognized by HP Fortran 90

Vendor Directive

Cray DIR$ NO SIDE EFFECTS

DIR$ [NO]CONCUR

DIR$ IVDEP

FPP$ NODEPCHK

20 Chapter 1

New and Changed Features
Features Added at Release 1.1

In fixed format, each directive must be preceded by the comment
character C, ! , or * and must begin in column 1 of the source file. In free
format, the directive must be preceded by the Fortran 90 comment
character (!).

If an option or argument is included with the directive name, the
compiler ignores the directive.

The following sections describe the directives in detail.

Controlling Vectorization
HP Fortran 90 can vectorize eligible program loops that operate on
vectors. This optimization causes the compiler to replace the loops with
calls to selected routines in the Basic Linear Algebra Subroutine (BLAS)
library. You can use the *$* [NO]VECTORIZE directive to enable or
disable vectorization. The compiler considers the *$* VECTORIZE
directive as a request to vectorize a loop. If the compiler determines that
it cannot profitably or safely vectorize the loop, it ignores the directive.

To use the vectorization directive, you must compile and link with the
+Ovectorize option. The directive applies to the beginning of the next
loop and remains in effect for the rest of the program unit or until
superseded by a later directive. For more information about this option,
see HP Fortran 90 Programmer's Reference, Chapter 13; for information
about the BLAS library, see Chapter 12.

Controlling Parallelization
HP FORTRAN can parallelize eligible program loops by distributing
different iterations of the loop to different processors for parallel
execution on a multiprocessor machine. The following directives provide
local control over parallelization:

• *$* [NO]CONCURRENTIZE

• DIR$ [NO]CONCUR

KAP *$* [NO]CONCURRENTIZE

$ [NO]VECTORIZE

VAST VD$ NODEPCHK

Vendor Directive

Chapter 1 21

New and Changed Features
Features Added at Release 1.1

These directives have both enable and disable versions:
$ CONCURRENTIZE and DIR$ CONCUR enable parallelization;
$ NOCONCURRENTIZE and DIR$ NOCONCUR disable parallelization.

The parallelization directives are effective only if you have compiled and
linked the program with the +Oparallel and the +O3 option. Each
directive applies to the beginning of the next loop and remains in effect
for the rest of the program unit or until superseded by a later directive.

The compiler considers the *$* CONCURRENTIZE and DIR$ CONCUR
directives as requests to parallelize a loop. If the compiler cannot
profitably or safely parallelize the loop, it ignores the directive. For
information about conditions that can inhibit parallelization, see
“Conditions Inhibiting Loop Parallelization” on page 40. For more
information about parallelizing your Fortran programs, see
“Parallelizing HP Fortran 90 Programs” on page 39.

Controlling Dependence Checks
The compiler will not parallelize a loop where it detects a possible data
dependence, even if you use an option or directive that specifically
requests parallelization. (For a discussion of why loops with a data
dependence cannot be parallelized, see “Data Dependencies” on page 41.)
However, if you know that there is no actual data dependence in the loop
in question, you can insert one of the following directives just before the
loop:

• DIR$ IVDEP

• FPP$ NODEPCHK

• VD$ NODEPCHK

The effect of these directives is to cause the compiler to ignore data
dependences within the next loop when determining whether to
parallelize. The DIR$ IVDEP directive differs from the other two in that
it causes the compiler to ignore only array-based dependences, but not
scalar-based. All three directives apply to the next loop only.

NOTE Using these directives to incorrectly assert that a loop has no data
dependences can result in the loop producing wrong answers.

Other conditions may limit the compiler's efforts to parallelize, such as
the presence of the VD$ NOCONCUR directive. Such conditions may
prevent parallelization even if you use a directive to disable dependence
checking.

22 Chapter 1

New and Changed Features
Features Added at Release 1.1

Controlling Checks for Side Effects
The compiler will not parallelize a loop with an embedded call to a
routine if the compiler finds that the routine has side effects. (For a
discussion of side effects and why they can prevent parallelization, see
“Calling Routines with Side Effects” on page 40.) However, if you know
that a routine that is called inside of a loop does not have side effects, you
can insert the DIR$ NO SIDE EFFECTS directive in front of the loop to
force the compiler to ignore any side effects in the referenced routine
when it determines whether to parallelize the loop.

This directive affects only the immediately following loop.

NOTE Using this directive to incorrectly assert that a routine has no side
effects can result in wrong answers when a call to the routine is
embedded in a loop.

Cray's implementation of this directive requires that it precede any
executable statement or statement function. HP Fortran 90 does not
enforce this requirement.

MP_NUMBER_OF_THREADS Environment
Variable
The MP_NUMBER_OF_THREADS environment variable enables you to set
the number of processors that are to execute your program in parallel. If
you do not set this variable, it defaults to the number of processors on the
executing machine.

On the C shell, the following command sets MP_NUMBER_OF_THREADS to
indicate that programs compiled for parallel execution can execute on
two processors:

setenv MP_NUMBER_OF_THREADS 2

If you use the Korn shell, the command is:

export MP_NUMBER_OF_THREADS=2

To optimize your program for parallel execution, you must use the
+O[no]parallel option; see “+Oparallel Option” on page 19. For
information about other environment variables that are available with
HP Fortran 90, see “Environment Variables” on page 35.

Chapter 1 23

New and Changed Features
Features Added at Release 1.1

Multi-Threaded Programming
HP Fortran 90 programs can execute in a multi-threaded environment;
see “+Oparallel Option” on page 19. The HP Fortran 90 I/O library has
been thread-safed for correct execution within this environment.

Large-File System Support
Programs compiled with this release of HP Fortran 90 can create files
greater than 2 gigabytes. The program must be running on HP-UX 10.30
or higher, and you must have an HP-UX Hierarchical File System (HFS)
that is configured for large files. By default, the HP-UX HFS file system
does not allow files greater than 2 gigabytes. To allow large files, use the
fsadm command; for more information, see the fsadm(1m) and
fsadm_hfs(1m) man pages.

The maximum size of a record and the maximum number of records in a
direct-access file continue to have the same limit, 2 gigabytes—that is,
MAXINT, or 2147483647.

24 Chapter 1

New and Changed Features
Changes as of Release 1.0

Changes as of Release 1.0
The following sections describe changes to HP Fortran 90 since release
1.0.

PA-RISC 1.0 Architecture Not Supported
Starting with this release, the HP Fortran 90 compiler no longer
supports the PA-RISC 1.0 architecture. This means that the +DA and +DS
compile-line options will not accept the 1.0 argument. Refer to the f90(1)
man page or to the HP Fortran 90 Programmer's Reference, Chapter 13,
for acceptable arguments to these options.

Instruction Scheduling
Instruction scheduling is determined (as currently documented) by the
argument you specify with the +DS option. However, if you do not use
this option, the compiler will use the argument you specify with the +DA
option. If you specify neither +DA nor +DS, the default instruction
scheduling is based on that of the system on which you are compiling.

The following command lines summarize the change:

code generation and instruction scheduling based on the
model of the machine on which f90 is executing:
f90 prog.f90

code generation based on 1.1, instruction scheduling on 2.0
f90 +DA1.1 +DS2.0

code generation and instruction scheduling based on 2.0
f90 +DA2.0

code generation and instruction scheduling based on 1.1
f90 +DAportable

+Olibcalls Option
Compiling at optimization level 2 or higher enables the optimization
performed by the +Olibcalls option. If a program uses an intrinsic
routine for which a millicode version exists and the program is compiled
with -O , +O2, or +O3, the optimizer will substitute the millicode version.

The default at optimization levels 0 and 1 is still +Onolibcalls .

Chapter 1 25

New and Changed Features
Changes as of Release 1.0

+Oregionsched Option
Starting with this release, f90 ignores the +O[no]regionsched option.
Changes to the optimizer have reduced the performance benefit of the
optimization enabled by this option. The compiler will recognize this
option if specified on the command line, but the option has no effect and
will be removed from the compiler at a future release.

STAT= Specifier for ALLOCATE Statement
The values returned by the STAT= specifer for the ALLOCATE statement
have been changed to provide more precise error control. A return value
of zero has the same meaning: the operation was successful. But the
meaning of a nonzero return value (an error status) has been changed
according to the kind of error, as follows:

1 Error occurred after array was allocated; for example,
array was previously allocated.

2 Error occurred before array was allocated; for example,
dynamic memory allocation failure.

3 Errors occurred both before and after allocation. This
kind of an error can only occur if the same ALLOCATE
statement is used to allocate more than one array, and
both kinds of errors occur.

26 Chapter 1

New and Changed Features
Changes as of Release 1.0

27

2 Using HP Fortran 90

This chapter provides usage information on the following topics:

• Compiling and linking HP Fortran 90 programs

• Preparing HP Fortran 90 rograms for parallel execution

• Migrating applications from HP FORTRAN 77 to HP Fortran 90

• Incompatibilities between HP FORTRAN 77 and HP Fortran 90

• Calling C routines from HP Fortran 90 programs

• Writing HP Fortran 90 applications for HP-UX

28 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Compiling and Linking HP Fortran 90
Programs
This section discusses the following topics:

• The f90 command line

• Filename extensions

• Compiling HP Fortran 90 programs with modules

• Compile-line options

• Compiler directives

• Environment variables

• Libraries used by the compiler

• Diagnostic messages issued by the compiler

• Optimization

f90 Command Line
The command-line syntax for invoking the HP Fortran 90 command
(f90) for compiling and linking is:

f90 [options] [files]

where options is a space-delimited list of compile-line options and files is
a space-delimited list of files containing source or object code. options and
files can be interspersed on the command line.

Filenames Accepted by the f90 Command
Files that end in the extensions listed in Table 2-1 are compiled as
Fortran 90 source files. For each source file that compiles successfully,
the corresponding object code is placed in the current directory in a file
whose name is that of the source, with the .o extension.

Chapter 2 29

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Table 2-1 Extensions of Filenames Compiled by f90

Only files ending in .F are preprocessed by the C preprocessor by
default. Use the +cpp=yes option to preprocess files that end in .f90
and .f .

The f90 command accepts but does not compile files with other
extensions, passing them to another process. For example, filenames
with the .o extension are assumed to be object files and are passed to the
linker (ld); and filenames with the .s extension are assumed to be
assembly-language source files and are passed to the assembler (as).
Except for filenames ending in .s or any of the extensions listed in Table
2-1, all others are passed to the linker.

Compiling HP Fortran 90 Modules
Files that end in .mod are HP Fortran 90 modules that are created and
read by the compiler. However, the compiler does not process any .mod
files that may be specified on the command line.

NOTE Do not specify .mod files on the command line. If you do, the compiler
will pass them to the linker, which will try (and fail) to link them into the
executable.

When compiling a program that defines and uses modules in different
source files, f90 creates a .mod file for each module in the source files, in
addition to the .o files. The compiler must have created any .mod files

Extension Meaning

.f90 Free-format source file, processed by the
compiler

.F Fixed-format source file, processed first by
the C preprocessor cpp , then by the compiler

.f Fixed-format source file, processed by the
compiler

.i90 Free-format output from C preprocessor, if
source ends in .f90

.i Fixed format output from C preprocessor, if
source ends in .F or .f

30 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

before compiling the files that use the modules. Consider, for example, a
program that consists of two files: the first (file1.f90) defines the
module module1 and the second (file2.f90) uses it. The following
command lines compile and link the program correctly:

f90 -c file1.f90
f90 -c file2.f90
f90 -o my_program file1.o file2.o

The crucial lines are the first two, which must be specified in order. The
first one creates two files: file1.o and MODULE1.mod. The second needs
MODULE1.mod to compile file2.f90 .

The same effect can be produced with one command line, so long as the
defining file is specified before the using file, as in the following:

f90 -o my_program file1.f90 file2.f90

All .mod files are written to and read from the current directory by
default. Use the +moddir= directory and -I directory options to specify
different directories:

• The +moddir= directory option causes the compiler to write .mod files
to directory.

• The -I directory option causes the compiler to search directory for
.mod files to read.

Compile-Line Options
Almost all of the f90 compile-line options have their counterparts among
the f77 options. A few of the UNIX-type options (for example, -g and -o)
have the same name they had under f77 . However, most of the f90
options have been renamed for readability. For the sake of compatibility
with HP FORTRAN 77, many of the renamed options also have their f77
names; for example, to prepare a program for profiling by gprof , you can
specify either -G or +gprof . See “f77 Options Supported by f90” on
page 32 for information about the relationship between f77 options and
f90 options.

For an online list of the f90 compile-line options, use the +usage option,
as follows:

f90 +usage

Chapter 2 31

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

If you misspell an option name on the f90 command line, the compiler
looks for options that are similar to the one you entered and lists them as
possible alternatives on stderr . It meanwhile compiles the program
without the option in question.

For options of the form +option=arg, you can cause f90 to list the values
for arg on stderr by specifying just the option name without an
argument. For example, given the command line:

f90 +langlvl=

f90 will issue the following message:

f90: The '+langlvl=' option requires
 one of the following sub-options:

 90 generate messages about non-FORTRAN 90 features
 default no messages about nonstandard FORTRAN features

For detailed information about the options, see the HP Fortran 90
Programmer's Reference, Chapter 13. The options are summarized in the
f90(1) man page.

Commonly Used Options
Table 2-2 lists commonly used HP Fortran 90 options. All but the -L and
+save options have the same name and function as in f77 . The -L
option differs in that it uses fort77 semantics, and the +save option is
a different name for the -K option in f77 .

Table 2-2 Commonly Used Compile-Line Options

Option Effect

-c Compile without linking; produce an object (.o) file from each source file.

-g Prepare program for debugging (with HP DDE) or line-level performance
analysis (with Puma).

-L directory Use directory as the search path for libraries specified in succeeding -l
options. This option is also supported by fort77 , but not f77 .

-l x Link with lib x.a or lib x.sl .

-O Optimize at level 2.

32 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

f77 Options Supported by f90
The f90 command recognizes many of the f77 options by their old
names as well as by their f90 names; these are listed in Table 2-3. When
specified on an f90 command line, these f77 options have the same
effect as their f90 replacements. For example, f90 recognizes either -G
or +gprof ; both prepare the program for profiling by gprof .

Table 2-3 f77 Options Supported by f90

-o outfile Name the output file (executable or object file) outfile.

+save Save all local variables upon exit from a program unit. This option is useful
for porting older programs that may contain uninitialized variables or that
require static storage for all variables. f90 also accepts the f77 form of this
option, -K .

-v Compile in verbose mode, reporting progress to stderr .

Option Effect

f77
Option f90 Option Function

-C +check=all Perform runtime subscript checking

-G +gprof Prepare for profiling with gprof

-K +save Use static storage for locals instead of stack

-N +noshared Mark linker output unshared

-n +shared Mark linker output shared

-p +prof Prepare for profiling with prof

-Q +nodemand_load Do not mark linker output demand load

-q +demand_load Mark linker output demand load

-R4 +real_constant=single Make single precision the default for all
single-precision constants

-R8 +real_constant=double Make double precision the default for all
single-precision constants

Chapter 2 33

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Table 2-4 lists f77 options that have been fully or partially replaced by a
renamed f90 option. Table 2-5 lists f77 options that are not recognized
by the f90 command and that have no f90 replacement.

Table 2-4 f77 Options Replaced by f90 Options

-S +asm Generate assembly listing

-s +strip Strip symbol table information from linker output

-Y +nls Enable Native Language Support

+Z +pic=long Generate position-independent code (large model)

+z +pic=short Generate position-independent code (small model)

f77
Option f90 Option Function

f77 Option f90 Replacement

-A +langlvl ; does not fully replace

-a +langlvl ; does not fully replace

+autodblpad +autodbl ; does not fully replace

+B +escape

-D +dlines

+es +extend_source

-F +cpp_keep

+I[2|4] +autodbl ; does not fully replace

-L +list

-onetrip +onetrip

+Q +pre_include

+s +langlvl ; does not fully replace

+T +fp_exception ; does not fully replace

+ttyunbuf +nottybuf

34 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Table 2-5 f77 Options Not Supported by f90

-U +uppercase

-u +implicit_none

-V +list ; does not fully replace

+800 +N

+A +O4

+A3 -O4

+A8 +Ofailsafe

+apollo +Oloop_transform

+df +Osideeffects

+E +Owhole_program_mode

+e +P

+I +pgm

+L8 +R

+LA +U

-lisam -y

+mr -w66

f77 Option f90 Replacement

Chapter 2 35

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Compiler Directives
HP Fortran 90 supports the following compiler directives:

• ALIAS

• CHECK_OVERFLOW

• LIST

• OPTIMIZE

The new syntax for specifying directives in free source form is:

!HP directive

In fixed source form, the syntax is the same except that the comment
character can be * , ! , or C, and the comment character must be in the
first position.

The use of the comment character in the directive syntax promotes
program portability by allowing the directive to be treated as a comment
except when the compiler is specifically looking for it.

Compiler directives are fully described in the HP Fortran 90
Programmer's Reference, Chapter 14. HP Fortran 90 also supports a
number of compatibility directives for controlling optimization; see
“Compiler Directives” on page 19.

Environment Variables
This section describes the following HP Fortran 90 environment
variables:

• HP_F90OPTS

• TMPDIR

• TTYUNBUF

• NLSPATH

In addition, the MP_NUMBER_OF_THREADS envionment variable is now
available for use with parallel executing programs; see
“MP_NUMBER_OF_THREADS Environment Variable” on page 22.

36 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

HP_F90OPTS
The HP_F90OPTS environment variable contains options and arguments
for the compiler. The compiler picks up the value of HP_F90OPTS and
places its contents before any arguments on the command line. For
example, if HP_F90OPTS has the value -v , the following command line:

f90 +list prog.f90

is equivalent to

f90 -v +list prog.f90

The bar (|) character can be used to specify that options appearing
before | are to be recognized before any options on the command line and
that options appearing after | are to be recognized after any options on
the command line. For example,

For example, to set HP_F90OPTS so that -O and -lmylib would always
be invoked whenever you compiled and that -O would be recognized first
and -lmylib last, you would use the following sh commands:

HP_F90OPTS="-O | -lmylib"
export HP_F90OPTS

or the csh equivalent:

setenv HP_F90OPTS="-O | -lmylib"

In either case, compiling prog.f90 with the command line:

f90 -v prog.f90

is equivalent to

f90 -O -v prog.f90 -lmylib

TMPDIR
The TMPDIR environment variable specifies a directory for temporary
files to be used instead of the default directory /var/tmp .

TTYUNBUF
The TTYUNBUF environment variable controls tty buffering. To enable tty
buffering, set TTYUNBUF to zero. To disable tty buffering, set TTYUNBUF
to a nonzero value.

Chapter 2 37

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

NLSPATH
The NLSPATH environment variable specifies the message catalog to be
used for the internationalization of compiler messages. For information
about diagnostic messages issued by the compiler, see “Diagnostic
Messages” on page 38.

Libraries Searched by f90
The compiler searches the libraries listed in Table 2-6 and Table 2-7
during the link phase to create executable programs; some are searched
by default (so indicated in the tables), others by specifying the +U77,
-lblas , and -lm options. You can specify other libraries by using the -L
or -l options.

Table 2-6 Libraries Shipped with HP Fortran 90

Table 2-7 Libraries Shipped with HP-UX Operating System

Library Contents

/opt/fortran90/lib/libU77.a libU77 routines

/opt/fortran90/lib/libblas.a BLAS library

/opt/fortran90/lib/libF90.a Fortran 90 intrinsics; searched by
default

/opt/fortran90/lib/libisamstub.a Stub library to satisfy ISAM references;
searched by default

/opt/fortran90/lib/libisamstubs.a Stub library to satisfy ISAM references

Library Contents

/usr/lib/libc.a C runtime library; searched by default

/usr/lib/libm.a Math routines

/usr/lib/libcl.a Fortran runtime library; searched by default

38 Chapter 2

Using HP Fortran 90
Compiling and Linking HP Fortran 90 Programs

Diagnostic Messages
Errors and warnings are written to standard error. If you use the +list
option to request a listing, errors and warnings are also written to
standard output.

The compiler also lists on stderr the names of each source file,
procedure, and module as they are encountered.

Optimization
As recommended in the HP Fortran 90 Programmer's Reference, Chapter
13, the +Oall option generally gives maximum performance. However,
some HP Fortran 90 programs may execute faster if they are compiled
with the +O2 and +Oaggressive options.

See “Parallelizing HP Fortran 90 Programs” on page 39 for information
about parallel optimization.

/usr/lib/lib*.sl Shareable versions of libraries; by default,
shareable versions are seacrched before archive
versions

/usr/lib/libcps.sl Runtime support for parallel execution;
searched by default when compiling with
+Oparallel

/usr/lib/libpthread.sl Kernel threads library for parallel execution;
searched by default when compiling with
+Oparallel

Library Contents

Chapter 2 39

Using HP Fortran 90
Parallelizing HP Fortran 90 Programs

Parallelizing HP Fortran 90 Programs
The following sections discuss how to use the +Oparallel option and
the parallel directives when preparing and compiling HP Fortran 90
programs for parallel execution. Later sections also discuss reasons why
the compiler may not have performed parallelization. The last section
describes runtime warning and error messages unique to
parallel-executing programs.

For a description of the +Oparallel option, see “+Oparallel Option” on
page 19. For information about directives that you can use to control
parallelization, see “Controlling Parallelization” on page 20.

Compiling for Parallel Execution
The following command lines compile (without linking) three source files:
x.f90 , y.f90 , and z.f90 . The files x.f90 and y.f90 are compiled for
parallel execution. The file z.f90 is compiled for serial execution, even
though its object file will be linked with x.o and y.o .

f90 +O3 +Oparallel -c x.f90 y.f90
f90 +O3 -c z.f90

The following command line links the three object files, producing the
executable file para_prog :

f90 +O3 +Oparallel -o para_prog x.o y.o z.o

As this command line implies, if you link and compile separately, you
must use f90 , not ld . The command line to link must also include the
+Oparallel and +O3 options in order to link in the parallel runtime
support.

Performance and Parallelization
To ensure the best runtime performance from programs compiled for
parallel execution on a multiprocessor machine, do not run more than
one parallel program on a multiprocessor machine at the same time.
Running two or more parallel programs simultaneously may result in
their sharing the same processors, which will degrade performance. You
should run a parallel-executing program at a higher priority than any
other user program; see rtprio(1) for information about setting real-time
priorities.

40 Chapter 2

Using HP Fortran 90
Parallelizing HP Fortran 90 Programs

Running a parallel program on a heavily loaded system may also slow
performance.

Profiling Parallelized Programs
You can profile a program that has been compiled for parallel execution
in much the same way as for non-parallel programs:

1. Compile the program with the +gprof option.

2. Run the program to produce profiling data.

3. Run gprof against the program.

4. View the output from gprof .

The differences are:

• Step 2 produces a gmon.out file with the CPU times for all executing
threads.

• In Step 4, the flat profile that you view uses the following notation to
denote DO loops that were parallelized:

routine_name##pr_line_ nnnn

where routine_name is the name of the routine containing the loop,
pr (parallel region) indicates that the loop was parallelized, and nnnn
is the line number of the start of the loop.

Conditions Inhibiting Loop Parallelization
The following sections describe conditions that can cause the compiler
not to parallelize.

Calling Routines with Side Effects
The compiler will not parallelize any loop containing a call to a routine
that has side effects. A routine has side effects if it does any of the
following:

• Modifies its arguments

• Modifies a global, common-block variable, or save variable

• Redefines variables that are local to the calling routine

• Performs I/O

Chapter 2 41

Using HP Fortran 90
Parallelizing HP Fortran 90 Programs

• Calls another subroutine or function that does any of the above

You can use the DIR$ NO SIDE EFFECTS directive to force the compiler
to ignore side effects when determining whether to parallelize the loop.
For information about this directive, see “Controlling Checks for Side
Effects” on page 22.

NOTE A subroutine (but not a function) is always expected to have side effects.
If you apply this directive to a subroutine call, the optimizer assumes
that the call has no effect on program results and can eliminate the call
to improve performance.

Indeterminate Iteration Counts
If the compiler finds that a runtime determination of a loop's iteration
count cannot be made before the loop starts to execute, the compiler will
not parallelize the loop. The reason for this precaution is that the
runtime code must know the iteration count in order to determine how
many iterations to distribute to the executing processors.

The following conditions can prevent a runtime count:

• The loop is a DO-forever construct.

• An EXIT statement appears in the loop.

• The loop contains a conditional GO TO statement that exits from the
loop.

• The loop modifies either the loop-control or loop-limit variable.

• The loop is a DO WHILE construct and the condition being tested is
defined within the loop.

Data Dependencies
When a loop is parallelized, the iterations are executed independently on
different processors, and the order of execution will differ from the serial
order when executing on a single processor. This difference is not a
problem if the iterations can occur in any order with no effect on the
results. Consider the following loop:

 DO I = 1, 5
 A(I) = A(I) * B(I)
 END DO

42 Chapter 2

Using HP Fortran 90
Parallelizing HP Fortran 90 Programs

In this example, the array A will always end up with the same data
regardless of whether the order of execution is 1-2-3-4-5, 5-4-3-2-1,
3-1-4-5-2, or any other order. The independence of each iteration from the
others makes the loop an eligible candidate for parallel execution.

Such is not the case in the following:

 DO I = 2, 5
 A(I) = A(I-1) * B(I)
 END DO

In this loop, the order of execution does matter. The data used in
iteration I is dependent upon the data that was produced in the previous
iteration (I-1). The array A would end up with very different data if the
order of execution were any other than 2-3-4-5. The data dependence in
this loop thus makes it ineligible for parallelization.

Not all data dependences inhibit parallelization. The following
paragraphs discuss some of the exceptions.

Nested Loops and Matrices. Some nested loops that operate on
matrices may have a data dependence in the inner loop only, allowing the
outer loop to be parallelized. Consider the following:

 DO I = 1, 10
 DO J = 2, 100
 A(J,I) = A(J-1,I) + 1
 END DO
 END DO

The data dependence in this nested loop occurs in the inner (J) loop: each
row access of A(J,I) depends upon the preceding row (J-1) having been
assigned in the previous iteration. If the iterations of the J loop were to
execute in any other order than the one in which they would execute on a
single processor, the matrix would be assigned different values. The
inner loop, therefore, must not be parallelized.

But no such data dependence appears in the outer loop: each column
access is independent of every other column access. Consequently, the
compiler can safely distribute entire columns of the matrix to execute on
different processors; the data assignments will be the same regardless of
the order in which the columns are executed, so long as the rows execute
in serial order.

Assumed Dependences. When analyzing a loop, the compiler may
err on the safe side and assume that what looks like a data dependence
really is one and so not parallelize the loop. Consider the following:

Chapter 2 43

Using HP Fortran 90
Parallelizing HP Fortran 90 Programs

 DO I = 101, 200
 A(I) = A(I-K)
 END DO

The compiler will assume that a data dependence exists in this loop
because it appears that data that has been defined in a previous iteration
is being used in a later iteration. On this assumption, the compiler will
not parallelize the loop.

However, if the value of K is 100, the dependence is assumed rather than
real because A(I-K) is defined outside the loop. If in fact this is the case,
the programmer can insert one of the following directives immediately
before the loop, forcing the compiler to ignore any assumed dependences
when analyzing the loop for parallelization:

• DIR$ IVDEP

• FPP$ NODEPCHK

• VD$ NODEPCHK

For more information about these directives, see “Controlling
Dependence Checks” on page 21.

44 Chapter 2

Using HP Fortran 90
Migrating to HP Fortran 90

Migrating to HP Fortran 90
A major feature of HP Fortran 90 is its compatibility with
standard-conforming HP FORTRAN 77. Both source files and object files
from existing HP FORTRAN 77 applications can be compiled by HP
Fortran 90 with comparatively little effort. However, some compile-line
options and nonstandard extensions in HP FORTRAN 77 programs may
require modification.

To smooth the migration path, HP Fortran 90 includes a number of
extensions that are compatible with HP FORTRAN 77. HP Fortran 90
also includes extensions that are designed to ease the job of porting
applications from other vendors' Fortran dialects. For a summary list of
all HP Fortran 90 extensions, see the HP Fortran 90 Programmer's
Reference, Appendix A.

This section discusses issues and approaches to migrating applications
from HP FORTRAN 77 to HP Fortran 90.

Migration Issues
Migration issues fall into four general categories:

• Source code

• Compile-line options

• Object code

• Data files

Source Code Issues
For standard-conforming HP FORTRAN 77 code, migration to HP
Fortran 90 can be as simple as recompiling with the f90 command. The
f90 command accepts source files with the extensions .f and .F (among
others).

However, source code is likely to be the main obstacle on the migration
path to HP Fortran 90. The reason is that HP FORTRAN 77 supports a
number of compiler directives and intrinsic functions, some of which are
supported by HP Fortran 90, but others of which are either unsupported

Chapter 2 45

Using HP Fortran 90
Migrating to HP Fortran 90

or have changed. The following paragraphs discuss how to change
directives and intrinsics when migrating HP FORTRAN 77 source code
to HP Fortran 90.

NOTE HP FORTRAN 77 accepts (or forgives) a number of common but
nonstandard programming practices that HP Fortran 90 does not. These
nonstandard practices as well as all known incompatibilities between HP
FORTRAN 77 and HP Fortran 90 are listed in “Incompatibilities with
HP FORTRAN 77” on page 54.

Directives. HP FORTRAN 77 supports more than seventy directives;
of these, only a handful are supported by HP Fortran 90; see “Compiler
Directives” on page 35, for the directives that are supported and for the
new directive syntax. Note that, except for the LIST directive, the HP
Fortran 90 directives have more limited functionality than their HP
FORTRAN 77 counterparts; see the HP Fortran 90 Programmer's
Reference, Chapter 14.

Although most of the HP FORTRAN 77 directives are not supported by
HP Fortran 90, some of their functionality is available through
compile-line options; see Table 2-8.

Table 2-8 HP FORTRAN 77 Directives Supported by f90 Options

HP FORTRAN 77
Directive

HP Fortran 90
Option Remarks

ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

ASSEMBLY +asm

AUTODBL DBL +autodbl[4]

AUTODBL OFF +noautodbl

CONTINUATIONS Obsolete; the functionality enabled by
the directive is now the default.

DEBUG -g

IF/ELSE/ENDIF Use C preprocessor (cpp) directives.

GPROF (ON) +gprof

46 Chapter 2

Using HP Fortran 90
Migrating to HP Fortran 90

Intrinsic Functions. HP Fortran 90 supports most of the intrinsics
available in HP FORTRAN 77, and more. In addition, most of these
intrinsics are available in HP Fortran 90 without having to activate
them with compiler directives or compile-line options.

GPROF OFF +nogprof

HP_DESTINATION +DA or +DS

INCLUDE Use the Fortran 90 INCLUDE line.

INIT +Oinitcheck Option also saves all symbols.

LIST_CODE +asm

LONG +autodbl[4] Option also affects reals.

LOWERCASE +[no]uppercase Lowercase is default.

NLS +nls

ONETRIP +[no]onetrip

POSTPEND +[no]ppu

RANGE (ON) +check=all or -C

RANGE OFF +check=none

SAVE_LOCALS (ON) +save

SAVE_LOCALS OFF +nosave

SET -D or -U Use the C preprocessor #define
directive.

STANDARD_LEVEL ANSI +langlvl=f90 Applies to Fortran 90 instead of
FORTRAN 77.

SYMDEBUG -g

UPPERCASE +[no]uppercase Lowercase is default.

WARNINGS -w

HP FORTRAN 77
Directive

HP Fortran 90
Option Remarks

Chapter 2 47

Using HP Fortran 90
Migrating to HP Fortran 90

With the larger number of available intrinsics in HP Fortran 90, there is
the risk of name collisions with user-defined functions in existing HP
FORTRAN 77 source code. Use of the EXTERNAL statement can prevent
such collisions. Also, you should be aware that many HP FORTRAN 77
intrinsics accept additional (nonstandard) argument types; HP Fortran
90 is more standard-conforming in this regard.

For information about all of the HP Fortran 90 intrinsics, see the HP
Fortran 90 Programmer's Reference, Chapter 11.

Compile-Line Option Issues
Compile-line options can become a migration issue in two ways:

• If you compile a program with the HP Fortran 90 compiler and the
command line contains an unsupported f77 option, f90 will flag the
option with an error message.

Refer to Table 2-3 for a list of the options that are supported under
their f77 names as well as their f90 names. Table 2-4 lists the f77
options that have been replaced by f90 options, and Table 2-5 lists
the f77 options that are not supported by f90 .

• When you execute a program that consists of a mix of object files that
have been created by f77 and f90 . The problem here is that,
although the object files may have been successfully linked, they may
not be compatible. If they were incompatible, the resulting executable
could behave unexpectedly or produce wrong results. Migration
problems caused by incompatible object files are unusual but more
difficult to detect and are discussed in “Object-Code Issues” on
page 47.

Object-Code Issues
Some migration problems do not manifest themselves until runtime,
when the program behaves unexpectedly or produces incorrect results.
Such problems can occur when incompatible HP FORTRAN 77 object
files are linked to HP Fortran 90 object files.

Although the format of object files generated by f77 is compatible with
the format of object files generated by f90 , individual data items within
the f77 -generated file may not be. Migration problems can occur if the
HP FORTRAN 77 object files represent data in a nonstandard form. For
example, HP Fortran 90 does not allow misaligned data or nonstandard
logical representations, whereas HP FORTRAN 77 does.Procedure

48 Chapter 2

Using HP Fortran 90
Migrating to HP Fortran 90

interfaces, on the other hand, usually do not present problems, so long as
the procedures are properly defined and called in the HP FORTRAN 77
source code. That is, as long as the definition and call match in argument
types, return types, and alternate return capability, the HP Fortran 90
compiler can do the appropriate conversions, copying, etc., to make the
calls work.

To resolve object-code incompatibilities, you will need access both to the
source file and to the f77 command line that was used to generate the
HP FORTRAN 77 object file. Examine the source file for directives that
are not supported by HP Fortran 90, such as the $LOGICAL directive.
(See “Compiler Directives” on page 35 for a list of the directives that are
supported.) Also, look over the f77 command line for any of the
unsupported options that are listed in Table 2-5.

If you find object-code incompatibilities, you should clean up the source
code and recompile with the f90 command.

Data-File Issues
In general, data files are the easiest files to migrate because the data
files produced by the two Fortrans are compatible. However, problems
can occur because of misaligned data and data types that are not
supported under HP Fortran 90. For example, HP FORTRAN 77 permits
misaligned data, especially when working with the structure extension.
Also, HP FORTRAN 77 accepts nonstandard representations of logicals.
Both examples can result in data files that are incompatible with HP
Fortran 90.

To resolve problems with incompatible data files, examine the source file
of the program that generated the data file as well as the command line
that was used to compile the source file, following the suggestions made
in the section “Object-Code Issues” on page 47.

Approaches to Migration
The most direct (and painstaking) approach to migrating an HP
FORTRAN 77 program so that it will compile and execute correctly
under HP Fortran 90 is to make a clean sweep through the original
source code, removing all extensions and rewriting all nonstandard
programming practices to conform to the Fortran 90 standard. The result
will be a highly portable program.

Chapter 2 49

Using HP Fortran 90
Migrating to HP Fortran 90

The disadvantage of the "clean-sweep" approach is that it may require a
considerable expense of time and work that may not even be necessary.
Many HP FORTRAN 77 extensions are also supported under HP Fortran
90; see, for example, Table 2-3 and Table 2-8. The only changes that you
must make to the source are to remove or recode incompatible
extensions.

Although the task of migrating an HP FORTRAN 77 program to HP
Fortran 90 can be done manually, there are several utilities that can help
to automate the search for incompatibilities. These utilities (including
sources of information about migrating to Fortran 90) are described in
the following sections.

HP-Supplied Migration Tools
The HP migration tools include the HP FORTRAN 77 and HP Fortran 90
compilers, lintfor , and fid .

HP FORTRAN 77 Compiler
You can use the f77 command to test source code for conformance to the
FORTRAN 77 standard. The -A option causes the compiler to issue
warnings when it encounters non-ANSI code.

If you use f77 for this purpose, the source code must conform to the
FORTRAN 77 grammar. In other words, f77 will flag both HP-specific
extensions as well as language features that are unique to Fortran 90. If
the source code contains any Fortran 90 features (some of which are
allowed in HP FORTRAN 77 but not in standard FORTRAN 77) or if you
introduce any Fortran 90 features during the migration process, the f77
command is no longer useful.

HP Fortran 90 Compiler
The f90 command can be used similarly to the f77 command to detect
incompatibilities in HP FORTRAN 77 source files. The advantage of f90
over f77 is that you can use it on code that already contains Fortran 90
features or to which you are incrementally adding such features as part
of the migration process.

The main drawback of f90 as a migration tool is that a clean compilation
under f90 does not guarantee that all incompatibilities have been found;
some do not manifest themselves until runtime. Also, linking under f90

50 Chapter 2

Using HP Fortran 90
Migrating to HP Fortran 90

with f77 -generated object files may yield unexpected behavior or
incorrect results; see “Object-Code Issues” on page 47 and “Data-File
Issues” on page 48.

In addition, the f90 command sometimes reports incompatibilities—
especially in syntax—one at a time. Needless to say, fixing
incompatibilities one at a time and recompiling after each fix may not be
the most cost-effective approach to migrating a large FORTRAN 77
program to HP Fortran 90.

Lintfor
The lintfor tool can be used on HP FORTRAN 77 code to detect
semantic assumptions that may not be valid for HP Fortran 90 code.
However, lintfor does not accept the Fortran 90 grammar and
therefore has the same drawbacks as the f77 command.

Fortran Incompatibilities Detector
The Fortran Incompatibilities Detector (fid) is an HP-supplied tool that
was developed specifically to help in migrating HP FORTRAN 77 code to
HP Fortran 90. It is located in:

/opt/fortran90/contrib/bin/fid

fid searches the target source-code file for various HP FORTRAN 77
extensions that are known to be incompatible with HP Fortran 90. It also
detects incompatible compile-line options when given an f77 command
line. fid reports both source-code and object-code incompatibilities
between HP FORTRAN 77 and HP Fortran 90. Furthermore, if fid
detects an incompatible extension whose functionality is enabled by
some other means in HP Fortran 90, it will suggest a fix.

fid works by searching the entire program and reporting all its findings
at once. Like the f77 command, it expects the target program to conform
to HP FORTRAN 77 syntax and will report syntax errors along with
incompatibilities it detects. Unlike f77 , however, if fid encounters a
syntax error, it attempts to recover and continue parsing the rest of the
program. This recovery mechanism allows fid to accept programs that
contain HP Fortran 90 language features.

Not all incompatibilities are on fid 's detection list. Some cannot be
found by any automated means, and others require too much time to
compute for even medium-sized programs.

Chapter 2 51

Using HP Fortran 90
Migrating to HP Fortran 90

To invoke fid , supply the fid command with one or more FORTRAN 77
source files and any desired f77 options. If a file has been partially
migrated to HP Fortran 90, change its extension to .f for use with fid .
Following are example command lines:

fid +800 file.f
fid +es program.f

Following are examples of the warning messages fid issues when it
detects an incompatibility:

fid Warning: The command-line option, +800,
 is both source incompatible
 and .o incompatible with F90

fid Warning on line 8 of file.f: ON EXTERNAL
 not supported by F90

fid Warning on line 9 of file.f: Detected IOSTAT
 specifier in OPEN statement: Minor
 differences exist between F90 and F77
 IOSTAT error numbers

The incompatibilities currently detected by fid are:

• The following I/O specifiers to the OPEN statement:

❏ ACCESS=expr, where expr is a constant expression other than
DIRECT or SEQUENTIAL.

❏ IOSTAT=

❏ KEY=

❏ NAME=

❏ READONLY=

❏ STATUS=expr, where expr is a constant expression other than OLD,
NEW, UNKNOWN, REPLACE, or SCRATCH.

❏ TYPE=

• The HP FORTRAN 77 forms of ON EXTERNAL and ON INTERNAL.

• LOGICAL types used as operands to the .EQ. and .NE. operators.

• All HP FORTRAN 77 compiler directives except those listed in
“Compiler Directives” on page 35.

• Compile-line options that are not supported (see Table 2-5) or that
have been replaced by f90 options (see Table 2-4).

52 Chapter 2

Using HP Fortran 90
Migrating to HP Fortran 90

fid 's list of incompatibilities will be periodically updated. For more
information about the fid command, see the fid(1) man page.

Third-Party Migration Tools and Information
Following is a list of third-party tools and sources of information relevant
to migrating programs to Fortran 90. All items except the first are
available online.

• Cooper Redwine's Upgrading to Fortran 90 (Springer, 1996).

• The Fortran FAQ contains some migration-related information,
including pointers to tools, books, and Internet resources. Some of the
third-party tools in this list are also mentioned or reviewed in the
FAQ. FAQ is available on either of the following:

URL: ftp://rtfm.mit.edu/pub/usenet/Fortran_FAQ
news:comp.lang.fortran

• The USENET group, news:comp.lang.fortran , includes
discussions relevant to both FORTRAN 77 and Fortran 90.

• World Wide Web Pages: The following sites are of particular interest
to programmer's migrating applications to Fortran 90. Following each
listing is its URL.

❏ The HP Fortran Web Page contains up-to-date information on
HP's Fortran products.

http://www.hp.com/go/hpfortran

❏ Metcalf's Fortran Information contains a long list of
implementations, books, course material, and other resources.

http://www.fortran.com/fortran/metcalf.html

❏ The Fortran 90 resource list contains a list of Fortran Web
resources, including FAQs, code repositories, and USENET
groups.

http://www.hpctec.mcc.ac.uk/hpctec/courses/Fortran90/resourc
e.html

❏ Michael Metcalf's convert.f90 program converts standard
FORTRAN 77 code into Fortran 90. According to the Fortran FAQ,
this program also performs updates such as indenting DO loops
and IF blocks, inserting interface blocks drawn from procedure
source code, and changing nonstandard length-specification
syntax.

Chapter 2 53

Using HP Fortran 90
Migrating to HP Fortran 90

ftp://jkr.cc.rl.ac.uk/pub/MandR/convert.f90

❏ Robert Moniot's ftnchek performs a variety of semantic checks
on FORTRAN 77 programs. It is not designed as a FORTRAN 77
syntax checker. It can accept some nonstandard language
extensions and provides an extensive set of options for
customizing the checks performed. The output is detailed and
informative.

ftp://netlib.org/fortran/ftnchek.tar.gz

54 Chapter 2

Using HP Fortran 90
Incompatibilities with HP FORTRAN 77

Incompatibilities with HP FORTRAN 77
This list of known incompatibilities includes both source-level and
object-code incompatibilities. A subset of these are detected by the HP
fid tool, as described in “Fortran Incompatibilities Detector” on page 50.

Command-Line Options Not Supported
The HP Fortran 90 compiler does not accept the f77 compile-line options
listed in Table 2-5. In addition, HP Fortran 90 code may not link
correctly with HP FORTRAN 77 object files that were compiled with
these options; see “Object-Code Issues” on page 47.

Floating-Point Constants
The HP Fortran 90 compiler differs from HP FORTRAN 77 in its
handling of floating-point constants. The HP Fortran 90 compiler
conforms to the standard: a single-precision constant is treated as a
single-precision data item in all situations, regardless of how many digits
were supplied when specifying it. HP FORTRAN 77 actually scans and
saves constants internally in double precision. This behavior can produce
slightly different results.

In HP Fortran 90, the statement

DOUBLE PRECISION x = 3.1415926535

will initialize x to only 32 bits worth of the constant because it interprets
the constant as single precision. Under HP Fortran 90, a constant must
have a D exponent or a KIND suffix to be interpreted as double precision.

In programs that use double precision exclusively, you should consider
using the +real_constant=double option, which causes real constants
to default to double precision.

Intrinsic Functions
The Fortran 90 standard has introduced new intrinsics that may collide
with function names in FORTRAN 77 code. You can resolve such
collisions by using the EXTERNAL statement.

Chapter 2 55

Using HP Fortran 90
Incompatibilities with HP FORTRAN 77

Also, HP FORTRAN 77 allows intrinsics to accept a wider variety of
argument types than HP Fortran 90 does. For example, in HP FORTRAN
77 the MAX and MIN intrinsics can take arguments of different types,
while HP Fortran 90 follows the standard and requires all arguments to
be of the same type. The HP Fortran 90 version of the TIME intrinsic
takes a CHARACTER* argument; it will not accept an integer. Other
intrinsics are similarly affected.

Statement Functions
HP FORTRAN 77 allows the nesting of statement functions, as in the
following:

func1(x) = x + x
func2(y) = 2 * func1(y)

In conformity with the Fortran 90 standard, HP Fortran 90 does not
allow statement functions to appear on the righthand side of a statement
function definition.

Also, HP FORTRAN 77 accepts statement functions that convert
arguments; HP Fortran 90 does not.

Procedure Calls and Definitions
When defining a procedure or making a procedure call, HP Fortran 90
makes the following requirements, which HP FORTRAN 77 overlooks:

• Function references must include the parentheses for the argument
list, even when no arguments are supplied. For example, if foo is a
user-defined function returning CHARACTER*10, HP FORTRAN 77
permits LEN(foo) and returns 10. HP Fortran 90 requires
LEN(foo()) .

• Extraneous commas, such as may be used in HP FORTRAN 77 as
"placeholder" arguments, are not accepted. The following is
acceptable to f77 but not f90 :

call a (a,)

To specify optional arguments in HP Fortran 90, use the OPTIONAL
statement.

• The SYSTEM INTRINSIC directive, by which HP FORTRAN 77
determines interfaces, is not supported by HP Fortran 90.

56 Chapter 2

Using HP Fortran 90
Incompatibilities with HP FORTRAN 77

• Recursive procedures must be so declared with the RECURSIVE
keyword; HP FORTRAN 77 allows recursive procedures by default.

Data Types and Constants
The following HP FORTRAN 77 extensions for data types and constants
are not supported by HP Fortran 90:

• Double precision as the default storage for floating-point constants;
see “Floating-Point Constants” on page 54.

• I and J integer suffixes. To express the HP FORTRAN 77 constant
10I (or I*2) in HP Fortran 90, use 10_2 ; for 10J (or J*4) , use 10_4 .

• Use of the 8#n and 16#n for octal and hex constants, respectively. In
HP Fortran 90, use O"n" for octal constants and Z" n" for
hexadecimal constants.

• BOZ constants (that is, constants in binary, octal, or hexadecimal
format) in COMPLEX expressions.

• Non-integer array bounds and character length specifiers.

• Constant expressions that contain the ** (exponentiation) operator,
as in PARAMETER (RV=1**1.2) .

• Use of the PARAMETER statement without parentheses, as in

PARAMETER i = 1

In free format, f90 treats this statement as an error. In fixed format,
f90 treats it as an assignment, identical to:

PARAMETERi = 1

Use PARAMETER (i=1) instead.

• Use of the DATA statement to initialize integers with strings, as in:

DATA i /"abcd"/

• Use of COMPLEX(16) temporaries. For example, given the
declarations:

COMPLEX(KIND=8) :: foo
REAL(KIND=16) :: bar

the expression foo**bar is legal in HP FORTRAN 77 but not in HP
Fortran 90. (HP FORTRAN 77 coerces COMPLEX(16) entities to
COMPLEX(8) in order to continue a computation.)

Chapter 2 57

Using HP Fortran 90
Incompatibilities with HP FORTRAN 77

Given the previous declarations, the following is acceptable in HP
Fortran 90:

foo**REAL(bar, 8) ! foo**bar

See the HP Fortran 90 Programmer's Reference, Chapter 11, for
information about the REAL intrinsic.

Input/Output
Some of the I/O specifiers that you can give to OPEN and other I/O
statements in HP FORTRAN 77 are not supported in HP Fortran 90;
these are listed in “Fortran Incompatibilities Detector” on page 50.
(Also, compare the description of OPEN in the HP Fortran 90
Programmer's Reference, Chapter 10, with the description of the
HP FORTRAN 77 OPEN statement in the HP FORTRAN/9000
Programmer's Reference, Chapter 10.) In general, HP FORTRAN 77
allows more specifiers (and more options to specifiers) than does HP
Fortran 90.

In HP FORTRAN 77, namelist-directed output character strings are
always quote-delimited; how and whether such strings are delimited in
HP Fortran 90 depends on the DELIM= specifier. Also, HP FORTRAN 77
allows the NAMELIST statement to appear after executable statements;
HP Fortran 90 does not.

Directives
Only a small number of the compiler directives from HP FORTRAN 77
are supported under HP Fortran 90; see “Compiler Directives” on
page 35, which also gives the new directive syntax. The syntax and
functionality of individual directives has also changed; for detailed
information, see the HP Fortran 90 Programmer's Reference, Chapter 14.
All unsupported directives should be deleted or replaced by HP Fortran
90 code that results in the same functionality (see Table 2-8).

Miscellaneous
Following are miscellaneous incompatibilities between HP Fortran 90
and HP FORTRAN 77:

• The syntax and functionality of the HP Fortran 90 version of the ON
statement is different from the HP FORTRAN 77 version. For
example, ON EXTERNAL and ON INTERNAL are not supported in HP

58 Chapter 2

Using HP Fortran 90
Incompatibilities with HP FORTRAN 77

Fortran 90. For a full description of the ON statement with example
programs showing how to use it, refer to the HP Fortran 90
Programmer's Reference, Appendix D.

• HP FORTRAN 77 accepts the { character as comment syntax; HP
Fortran 90 does not.

• HP FORTRAN 77 accepts a PROGRAM statement with no name; HP
Fortran 90 requires the name.

• HP FORTRAN 77 extends the PROGRAM statement to enable access to
command-line arguments; HP Fortran 90 does not. For information
about how to use intrinsics to access command-line arguments, see
“Accessing Command-Line Arguments” on page 65.

• HP FORTRAN 77 supports arrays up to rank 20; HP Fortran 90
supports arrays up to rank 7.

• HP FORTRAN 77 accepts an expression like + -A , but HP Fortran 90
generates a syntax error. Use +(-A) instead.

• HP FORTRAN 77 does not print leading zeroes in floating-point
numbers; HP Fortran 90 does. This behavior is equivalent to
compiling an HP FORTRAN 77 program with the +E4 option (note
that this option is not supported by f90).

• In HP FORTRAN 77, integers that overflow (through initialization or
constant folding) are replaced with the maximum value for that type.
If HP Fortran 90 detects integer overflow, it treats it as an error; if it
does not detect it, the overflow value is truncated at runtime.

Chapter 2 59

Using HP Fortran 90
Calling C Routines from HP Fortran 90

Calling C Routines from HP Fortran 90
This section describes the following language differences between C and
HP Fortran 90 that are relevant to calling C routines from an HP
Fortran 90 program unit:

• Data types

• Arrays

• Argument-passing Conventions

• Strings

• Case sensitivity

• File handling

Data Types
Table 2-9 lists the corresponding data types for HP Fortran 90 and C.

Table 2-9 Data-Type Correspondence for HP Fortran 90 and C

HP Fortran 90 C

CHARACTER (array of) char

Hollerith (synonymous with CHARACTER) (array of) char

BYTE, LOGICAL(1) , INTEGER(1) char

LOGICAL(2) short

INTEGER(2) short

LOGICAL, LOGICAL(4) long or int

INTEGER, INTEGER(4) long or int

INTEGER(8) long long

REAL, REAL(4) float

DOUBLE PRECISION, REAL(8) double

REAL(16) long double

60 Chapter 2

Using HP Fortran 90
Calling C Routines from HP Fortran 90

The following sections provide more detailed information about language
differences for the following data types:

• Logicals

• Complex numbers

• Derived types

Logicals
C uses integers for logical types. In HP Fortran 90, a 2-byte LOGICAL is
equivalent to a C short , and a 4-byte LOGICAL is equivalent to a long
or int . In C and Fortran, zero is false and any nonzero value is true. HP
Fortran 90 sets the value 1 for true.

Complex Numbers
C has no complex numbers, but they are easy to simulate. Create a
struct type containing two floating-point members of the correct size —
two float s for the complex type, and two double s for the double
complex type. The following creates the typedef COMPLEX :

typedef struct
{
 float real;
 float imag;
} COMPLEX;

Derived Types
Although the syntax of Fortran's derived types differs from that of C's
structures, both languages have similar default packing and alignment
rules.

COMPLEX(4) struct

DOUBLE COMPLEX, COMPLEX(8) struct

derived type struct

HP Fortran 90 C

Chapter 2 61

Using HP Fortran 90
Calling C Routines from HP Fortran 90

Arrays
The important difference between arrays in HP Fortran 90 and arrays in
C is that Fortran uses a column-major storage representation for its
multi-dimensional arrays, whereas C uses row-major ordering. For
proper accessing, the order of the subscripts must be reversed.

For example, an array that is declared in C as

int my_array[2][3];

must be declared in Fortran 90 as

INTEGER, DIMENSION (3,2) :: my_array

Argument-Passing Conventions
The important difference between the argument-passing conventions of
C and HP Fortran 90 is that Fortran 90 passes arguments by reference
—that is, it passes the address of the argument—whereas C usually
passes arguments by value—that is, it passes a copy of the argument.
This difference affects calls not only to user-written routines in C but
also to all HP-UX system calls and subroutines that are accessed as C
functions.

HP Fortran 90 provides two built-in functions, %VAL and %REF, for use
when passing arguments from Fortran to C. These functions override
Fortran’s argument-passing conventions so that Fortran passes each
argument as C expects to receive them, by value (%VAL) or by reference
(%REF).

The %VAL and %REF built-in functions can also be used with the
HP ALIAS directive. For detailed information, see the HP Fortran 90
Programmer’s Reference, Chapter 14. See also the example program in
“File Handling” on page 63.

Strings
Unlike HP Fortran 90, programs written in C expect strings to be
null-terminated; that is, the last character of a string must be the null
character ('\0 '). To pass a string from Fortran to C, you must therefore
explicitly assign the null character to the final element of the character
array, as in the following:

CALL csub ('a string'//CHAR(0))

62 Chapter 2

Using HP Fortran 90
Calling C Routines from HP Fortran 90

For each CHARACTER*n argument passed to a Fortran subprogram, two
items are actually passed as arguments:

• The address of the argument in memory (that is, a pointer to the
argument).

• The argument's length in bytes. This is a "hidden" argument that is
available to the subprogram from the stack.

To pass a string argument from Fortran to C, you must explicitly prepare
the C function to receive the string address argument and the hidden
argument. The order of the address arguments in the argument list will
be the same in C as in Fortran. The hidden length arguments, however,
will come at the end of the list. If more than one string argument is
passed, the length arguments will follow the same order as the address
arguments — at the end of the list.

Here is the HP Fortran 90 code to pass two strings and an integer to a C
function:

INTEGER :: int1
CHARACTER(LEN=7) :: str1
CHARACTER(LEN=15) :: str2
LOGICAL :: result
...

result = func(str1, int1, str2)

To receive these arguments, the C function must have the following
prototype declaration:

int func (char *s1, int *i, char *s2, int len1, int len2);

Case Sensitivity
Unlike HP Fortran 90, C is case-sensitive. HP Fortran 90 converts all
external names to lowercase, and it disregards the case of internal
names. For example, the names foo and FOO are the same in Fortran,
but different in C.

If case sensitivity is an issue when calling a C function from an HP
Fortran 90 program, you can either compile the Fortran program with
the +uppercase option, which forces Fortran to use uppercase for
external names; or you can use the HP ALIAS directive specify the
case that Fortran should use when calling an external name.

Chapter 2 63

Using HP Fortran 90
Calling C Routines from HP Fortran 90

See HP Fortran 90 Programmer's Reference for information about the
+uppercase option (Chapter 13) and the HP ALIAS directive
(Chapter 14). See also “File Handling” on page 63 for an example of the
HP ALIAS directive.

File Handling
A Fortran unit number cannot be passed to a C routine to perform I/O on
the associated file; nor can a C file pointer be used by a Fortran routine.
However, a file created by a program written in either language can be
used by a program in the other language if the file is declared and opened
within the program that uses it.

C accesses files using HP-UX I/O subroutines and intrinsics. This
method of file access can also be used from Fortran instead of Fortran
I/O.

You can pass file units and file pointers from Fortran to C with the FNUM
and FSTREAM intrinsics. FNUM returns the HP-UX file descriptor
corresponding to a Fortran unit, which must be supplied as an argument;
see below for more information about file descriptors; see “Establishing a
Connection to the File” on page 68, for more information about file
descriptors. FSTREAM returns a C file pointer for a Fortran unit number.
The unit number must be supplied as an argument.

The following Fortran program calls the write system routine to
perform I/O on a file, passing in a file descriptor returned by FNUM.

Because of the name conflict between the write system routine and the
Fortran WRITE statement, the program uses the HP ALIAS directive
to avoid the conflict by referring to write as IWRITE . The program also
uses the %VAL and %REF built-in functions to force Fortran to pass the
arguments as the write routine expects to receive them: the first by
value, the second by reference, and the third by value.

 PROGRAM fnum_test

! Use the ALIAS directive to rename the "write" routine.
! The built-in functions %VAL and %REF indicate how the
! arguments are to be passed.

!HP ALIAS IWRITE = 'write' (%VAL, %REF, %VAL)

 CHARACTER*1 :: a(10)
 INTEGER :: i, fd, status

! fill the array with x's
 DO i = 1, 10

64 Chapter 2

Using HP Fortran 90
Calling C Routines from HP Fortran 90

 a(i) = 'x'
 END DO

! open the file for writing
 OPEN(1, FILE='file1', STATUS='UNKNOWN')

! pass in the unit number and get back a file descriptor
 fd = FNUM(1)

! call IWRITE (the alias for "write"), passing in three
! arguments:
! fd = the file descriptor returned by FNUM
! a = the character array to write
! 10 = the number of elements (bytes) to write
! the return value, status, is the number of bytes actually
! written; if the write was successful, it should be 10
 status=IWRITE(fd, a, 10)

 CLOSE (1, STATUS='KEEP')

! open the file for reading; we want to see if the write was
! successful
 OPEN (1, FILE='file1', STATUS='UNKNOWN')

 READ (1, 4) (a(i), i = 1, 10)
4 FORMAT (10A1)
 CLOSE (1, STATUS='DELETE')

 DO i = 1, 10
! if we find anything other than x's, the write failed
 IF (a(i) .NE. 'x') STOP 'FNUM_TEST failed'
 END DO

! check write's return value; it should be 10
 IF (status .EQ. 10) PRINT *, 'FNUM_TEST passed'

 END

See the HP Fortran 90 Programmer's Reference for detailed information
about the FNUM and FNUM intrinsics (Chapter 11) and the HP ALIAS
directive and the %VAL and %REF built-in functions (Chapter 14). For
information about the write system routine, see the write(2) man page.

Chapter 2 65

Using HP Fortran 90
Writing HP Fortran 90 Applications for HP-UX

Writing HP Fortran 90 Applications for
HP-UX
This section discusses how to use system resources in an HP Fortran 90
application designed to execute on the HP-UX operating system. These
resources include:

• Access to command-line arguments from HP Fortran 90 programs

• HP-UX system calls and standard library routines

• HP-UX file I/O

Accessing Command-Line Arguments
HP FORTRAN 77 extends the PROGRAM statement to enable access to
command-line arguments. This extension is not available in
HP Fortran 90. However, an HP Fortran 90 program can nevertheless
access command-line arguments by calling the IGETARG and IARGC
intrinsics.

For example, the following command line invokes the program fprog
with arguments:

fprog arg1 "another arg" 222

HP-UX captures the entire command line and makes the following
strings available to your program:

arg1
another arg
222

To access these arguments, your program must call the IGETARG and
IARGC intrinsics. IGETARG (available either as a function or as a
subroutine) gets a specific command-line argument. IARGC returns the
number of arguments on the command line.

The following program illustrates how to use both intrinsics:

PROGRAM test_igetarg

PARAMETER (arg_num = 1)

! arg_str is the character array to be written to
! by IGETARG
CHARACTER(LEN=30) :: arg_str

66 Chapter 2

Using HP Fortran 90
Writing HP Fortran 90 Applications for HP-UX

! IGETARG returns number of characters read within
! the specified parameter
! arg_num is the position of the desired argument in the
! the command line (the name by which the program
! was invoked is 0)
! arg_str is the character array in which the argument
! will be written
! 30 is the number of characters to write to arg_str
PRINT *, IGETARG(arg_num, arg_str, 30)
PRINT *, arg_str

! IARGC returns the total number of arguments on the
! command line
PRINT *, IARGC()

END

If this program is compiled and invoked by the name a.out in the
following command line:

a.out perambulation of a different sort

it produces the output:

13
perambulation
5

For more information about the IGETARG and IARGC intrinsics, see the
HP Fortran 90 Programmer's Reference, Chapter 11. You can also use
the GETARG intrinsic to return command-line arguments. GETARG is also
available as a libU77 routine; see the HP Fortran 90 Programmer's
Reference, Chapter 12.)

HP-UX System Calls and Library Routines
System calls provide low-level access to kernel-level resources, such as
the write system routine. For an example of a program that calls the
write routine, see “File Handling” on page 63. For information about
system calls, refer to HP-UX Reference, Section 2.

HP-UX library routines provide many capabilities, such as getting
system information and file stream processing. Library routines are
discussed in the HP-UX Reference, Section 3.

You can access many HP-UX system calls and library routines from
Fortran programs using the BSD 3F library, libU77.a . For details on
accessing routines in this library, see the HP Fortran 90 Programmer's
Reference, Chapter 12.

Chapter 2 67

Using HP Fortran 90
Writing HP Fortran 90 Applications for HP-UX

Another library provided with Fortran 90 is the Basic Linear Algebra
Subroutine (BLAS) library, libblas.a . These subroutines perform
low-level vector and matrix operations, tuned for maximum performance.
For information, see the HP Fortran 90 Programmer's Reference,
Chapter 12.

Using HP-UX File I/O
HP-UX file-processing routines can be used as an alternative to Fortran
file I/O routines. This section discusses HP-UX stream I/O routines and
I/O system calls.

Stream I/O Using FSTREAM
The HP-UX operating system uses the term "stream" to refer to a file as
a contiguous set of bytes. There are a number of HP-UX subroutines for
performing stream I/O; see the stdio(3S) man page.

Unlike Fortran I/O, which requires a logical unit number to access a file,
stream I/O routines require a stream pointer — an integer variable that
contains the address of a C-language structure of type FILE (as defined
in the C-language header file /usr/include/stdio.h .)

The following Fortran 90 statement declares a variable for use as a
stream pointer in an HP Fortran 90 program:

INTEGER(4) :: stream_ptr

To obtain a stream pointer, use the Fortran intrinsic FSTREAM, which
returns a stream pointer for an open file, given the file's Fortran logical
unit number:

stream-ptr = FSTREAM(logical-unit)

The logical-unit parameter must be the logical unit number obtained
from opening a Fortran file, and stream-ptr must be of type integer. If
stream-ptr is not of type integer, type conversion takes place with
unpredictable results. The stream-ptr should never be manipulated as an
integer.

Once you obtain stream-ptr, use the ALIAS directive to pass it by value to
stream I/O routines. (See “File Handling” on page 63, for an example
program that uses the ALIAS directive. All HP Fortran 90 directives are
described in the HP Fortran 90 Programmer's Reference, Chapter 14.)

68 Chapter 2

Using HP Fortran 90
Writing HP Fortran 90 Applications for HP-UX

Performing I/O Using HP-UX System Calls
File I/O can also be performed with HP-UX system calls (for example,
open , read , write , and close), which provide low-level access to the
HP-UX kernel. These routines are discussed in the HP-UX Reference,
Section 2; see also the online man pages for these routines. For an
example that shows how to call the write routine, see “File Handling”
on page 63.

Establishing a Connection to the File
HP-UX I/O system calls require an HP-UX file descriptor, which
establishes a connection to the file being accessed. A file descriptor is an
integer whose function is similar to a Fortran logical unit number. For
example, the following open system call (called from a C-language
program) opens a file named DATA.DAT for reading and writing, and
returns the value of an HP-UX file descriptor:

#include <fcntl.h> /* definition of O_RDWR contained here */
 ...
fildes = open("DATA.DAT", O_RDWR)

Obtaining an HP-UX File Descriptor in Fortran
The Fortran intrinsic FNUM returns the HP-UX file descriptor for a given
logical unit. The example program that is listed in “File Handling” on
page 63, calls the FNUM intrinsic. For information about FNUM, see the HP
Fortran 90 Programmer's Reference, Chapter 11.

69

3 Installation Information

You can install HP Fortran 90 after loading the HP-UX operating system
11.0 or later. HP Fortran 90 requires approximately 49 MB of disk space:
20 MB for the compiler and 29 MB for HP DDE, Blink Link, and HP
PAK.

To install your software, run the SD-UX swinstall command. It will
invoke a user interface that leads you through the installation process
and gives you information about product size, version numbers, and
dependencies.

For more information about installation procedures and related issues,
refer to Managing HP-UX Software with SD-UX and other README,
installation, and upgrade documentation included or described in your
HP-UX operating system package.

70 Chapter 3

Installation Information

71

4 Related Documentation

Refer to the following documents for information about the HP Fortran
90 compiler:

• HP Fortran 90 Programmer's Reference (B3908-90001). This manual
fully documents the 1.0 release of HP Fortran 90.

• f90(1) man page, which provides a summary reference to the f90
compile-line options.

• fid(1) man page, which describes the Fortran Incompatibilities
Detector (fid).

• http://www.hp.com/go/hpfortran , which provides current
information about the HP Fortran 90 compiler.

See “Corrections to the Documentation” on page 78 for documentation
errors.

For information about HP's optimizing compilers, see the HP PA-RISC
Compiler Optimization Technology White Paper (5964-9846E). A
PostScript file of this document is available online in:

/opt/langtools/newconfig/white_papers/optimize.ps

72 Chapter 4

Related Documentation

73

5 Restrictions, Problems, and
Fixes

This chapter tells you where to look for information about compiler
problems and fixes, and describes important restrictions, known
problems (along with their workarounds), and corrections to the
documentation.

74 Chapter 5

Restrictions, Problems, and Fixes
Locating Information on Problems and Fixes

Locating Information on Problems and
Fixes
HP customers on support can find a list of HP Fortran 90 compiler
problems and their fixes in the current "Software Status Bulletin" (SSB),
referencing the release number (1.2) and one of the following product
numbers:

• B3907DB — HP Fortran 90 Series 700

• B3909DB — HP Fortran 90 Series 800

To display the product number and the release version of your HP
Fortran 90 compiler, execute this HP-UX command:

what /opt/fortran/bin/f90

Any user can access the HP SupportLine database on the World Wide
Web, which permits searching for bug descripions and available patches.
The URL is:

http://us.external.hp.com:80/

Chapter 5 75

Restrictions, Problems, and Fixes
Restrictions in Release 1.2

Restrictions in Release 1.2
• No support for Softbench

• PBO and +O4

Profile Based Optimization (PBO) and level 4 optimizations (+O4) are
not available in this release of HP Fortran 90; see Table 2-5 for other
optimization options that are not currently available.

• Debugging Cray-style pointers

Cray-style pointers establish an implicit connection between the
pointer and the pointee, which DDE does not recognize. Therefore,
you cannot perform debugger operations on the pointee. For example,
given the statement

POINTER(P, iarr(nelem))

you can successfully print the pointer P and dereference it, but not
the pointee iarr .

dde> print iarr
Variable does not exist in this scope.

• The ON statement

When compiling at optimization level 2 or 3, the user should be aware
that the optimizer makes assumptions about the program that do not
take into account the behavior of user-defined procedures called by
the ON…CALL statement. Such procedures must therefore be well-
behaved in optimized programs. The following restrictions apply
when using the ON statement in an optimized program:

❏ The ON procedure must not assume that any variable in the
interrupted procedure or in its caller has its current value. (The
optimizer may have placed the variable in a register until after
the call to the interrupted procedure is complete.)

❏ The ON procedure must not change the value of any variable in the
interrupted procedure or in its caller if the effect of the ON
procedure is to return program control to the point of interrupt.

These restrictions do not apply if you compile at optimization level 0
or 1.

76 Chapter 5

Restrictions, Problems, and Fixes
Restrictions in Release 1.2

• Cray-Style pointers and double-precision values

When the +autodbl option is used with a Cray-style pointer, HP
Fortran 90 can have different semantics from those in effect on Cray
machines. Cray-style pointers are not expanded to eight-byte entities.
The HP Fortran 90 compiler generates a warning when a program
using Cray-style pointers is compiled with +autodbl .

Chapter 5 77

Restrictions, Problems, and Fixes
Known Problems

Known Problems
The compiler incorrectly allows the +Oaggressive option at
optimization levels 0 and 1. As documented, +Oaggressive is only to be
used at optimization levels 2 or higher. You must include +Ooptlevel on
the same command line with the +Oaggressive option, and optlevel
must be set to 2 or higher.

Also, if you specify +Oaggressive at level 2 (that is, if you also specify
+O2), you must also include the +Onovectorize option on the same
command line.

The following command lines summarize the correct and incorrect ways
to use +Oaggressive :

f90 +Oaggressive # Wrong, don’t use +Oaggressive at level 0.
f90 +O0 +Oaggressive # Wrong, same reason.
f90 +O1 +Oaggressive # Wrong, don’t use +Oaggressive at level 1.
f90 +O2 +Oaggressive # Wrong, must also use +Onovectorize
f90 +O2 +Oaggressive +Onovectorize # OK
f90 +O3 +Oaggressive # OK

78 Chapter 5

Restrictions, Problems, and Fixes
Corrections to the Documentation

Corrections to the Documentation
The following sections describe documentation errors.

OUT OF FREE SPACE Error
The HP Fortran 90 Programmer’s Reference, Appendix C, states that the
IOSTAT= and ERR= specifiers return error 913 (OUT OF FREE SPACE)
when the I/O library attempts to use more memory than is available.
However, these specifiers do not catch all instances of error 913,
especially those caused by memory allocation failures in the I/O library.

+fp_exception Option
The name of the +fp_exception option is misspelled as
“+fp_exceptions” in the current version of the HP Fortran 90
Programmer’s Reference, Chapter 13, and in the f90 (1) man page. The
man page has been corrected for this release. The HP Fortran 90
Programmer’s Reference will be corrected at the next revision.

Index

Index 79

Symbols
+autodbl option, 76
+cpp option, 29
+DA option, 24
+DS option, 24
+E4 option, 58
+list option, 38
+O2 option, 38
+O4 option not supported, 75
+Oaggressive option, 38
+Oall option, 38
+Oparallel option, 19, 75
+real_constant=double option,

54
+save option, 31
+U77 option, 37
+uppercase option, 62
+usage option, 30
.F extension, 29, 44
.f extension, 29, 44
.f90 extension, 29
.i extension, 29
.i90 extension, 29
.mod extension, 29
.o extension, 29
.s extension, 29

Numerics
1.0 argument, 24
64-bit code generation not

supported, 11

A
ACCEPT statement, 13, 17
accessing command-line

arguments, 58, 65
ALIAS directive, 35, 61, 62, 67
argument passing conventions,

61
arrays and C, 61

B
BACKSPACE statement, 14, 17
BLAS library, 37
Blink Link, 69
BOZ constants, 56
BUFFER IN statement, 13
BUFFER OUT statement, 16
built-in functions

REF, 61
VAL, 61

C
C and Fortran

argument passing conventions,
61

arrays, 61
case sensitivity, 62
data types, 59

C runtime library, 37
calling system and library

routines, 66, 68
case sensitivity and C, 61, 62
CHECK_OVERFLOW directive,

35
command-line arguments, 58,

65
comments, 58
compatibility

Cray, 13, 19
KAP, 19
VAST, 19

compatibity
f77 and f90, 44

compile-line options, 30
+autodbl, 76
+cpp, 29
+DA, 24
+DS, 24
+E4, 58
+list, 38
+O2, 38
+O4, 75

+Oaggressive, 38
+Oall, 38
+Oparallel, 19, 75
+save, 31
+U77, 37
+uppercase, 62
+usage, 30
commonly used, 31
compatibility with f77, 32, 45,

47
getting help, 30
HP_F90OPTS environment

variable, 36
-K, 31
-L, 31, 37
-l, 37
-lblas, 37
-lm, 37

compiler directives, 19, 45, 51,
57

ALIAS, 35, 61, 62, 67
CHECK_OVERFLOW, 35
CONCUR, 20
CONCURRENTIZE, 20
IVDEP, 21, 43
LIST, 35
LOGICAL, 48
NO SIDE EFFECTS, 22, 41
NODEPCHK, 21, 43
OPTIMIZE, 35
VECTORIZE, 20

compiler messages,
internationalizing, 37

compiling modules, 29
COMPLEX data type

BOZ constants, 56
simulating in C, 60
temporaries, 56

CONCUR directive, 20
CONCURRENTIZE directive,

20
constants, 56
convert.f90, 52

80 Index

Index

Cooper, Redwine, 52
Cray compatibility

BUFFER IN statement, 13
BUFFER OUT statement, 16

Cray-style pointers, 75, 76

D
data files, migrating, 48
DATA statement, 56
data types, 56

C and Fortran, 59
COMPLEX, 56, 60
derived types, 60
LOGICAL, 51, 60

debugging
HP DDE, 69
restrictions, 75

derived types and C, 60
diagnostic messages, 38
disk space, 69
documentation, 71

E
environment variables, 35

HP_F90OPTS, 36
MP_NUMBER_OF_THREAD

S, 22
NLSPATH, 37
TMPDIR, 36
TTYUNBUF, 36

error messages, 38
extensions

BUFFER IN statement, 13
BUFFER OUT statement, 16
GETPOS function, 14, 17
LENGTH function, 14, 17
OPTIONS statement, 18
SETPOS routine, 14, 17
UNIT function, 14, 17

extensions, filename, 28, 44
EXTERNAL statement, 47

F
f77

compatibity with f90, 44
migrating from, 44

f90
command line syntax, 28
compatibity with f77, 44
compiling modules, 29
HP_F90OPTS environment

variable, 36
man page, 71
migrating to, 44

FAQ, Fortran, 52
fid

command, 50
man page, 71

file descriptor, 68
file pointers, 63
filename extensions, 28, 44
files and C, 63
floating-point constants, 54, 56
FNUM intrinsic, 68
Fortran

FAQ, 52
Fortran Incompatibilities

Detector, 50
runtime library, 37

FSTREAM intrinsic, 67
ftnchk, 53
functions, built-in

REF, 61
VAL, 61

G
GETARG intrinsic, 65
GETPOS function, 14, 17

H
hidden length argument, 61
HP DDE, 69
HP PAK, 69
HP web page, 52

HP_F90OPTS environment
variable, 36

HP-UX
libraries, 37
system calls, 66

I
I and J suffixes, 56
I/O incompatibilities, 51, 57
I/O specifiers, 51
IARGC intrinsic, 65
IGETARG intrinsic, 65
incompatibilities, 54

array bounds, 56
arrays, 58
comments, 58
COMPLEX(16), 56
constants, 56
data files, 48
DATA statement, 56
data types, 56
detected by fid, 51
directives, 45, 51, 57
exponentiation operator, 56
expression syntax, 58
floating point, 58
floating-point constants, 54, 56
function references, 55
I and J suffixes, 56
I/O, 51, 57
integer overflow, 58
intrinsics, 47, 54
KIND parameter, 56
logical operands, 51
namelist I/O, 57
object files, 47
ON, 51
ON statement, 51, 58
OPEN statement, 51
optional arguments, 55
options, 47, 54
PARAMETER statement, 56

Index

Index 81

procedure calls, 55
procedure interface, 47
PROGRAM statement, 58
recursive procedures, 56
specifiers (I/O), 51
statement functions, 55

indeterminate loop counts and
parallelization, 41

installing HP Fortran 90, 69
internationalizing messages, 37
intrinsics, 54

compatibility, 47
FNUM, 68
FSTREAM, 67
GETARG, 65
IARGC, 65
IGETARG, 65
library, 37
MAX, 55
MIN, 55
REAL, 57
TIME, 55

ISAM stubs library, 37
IVDEP directive, 21, 43

J
J and I suffixes, 56

K
-K option, 31

L
-L option, 31, 37
-l option, 37
-lblas option, 37
LENGTH function, 14, 17
libraries, 37, 66

thread-safe, 23
libU77 library, 37
lintfor, 50
LIST directive, 35
-lm option, 37

LOGICAL data type, 51, 60
LOGICAL directive, 48
logical operands not supported,

51
logicals and C, 60

M
man pages

f90, 71
fid, 71

math routines library, 37
MAX intrinsic, 55
messages

diagnostic, 38
internationalizing, 37
issued by fid, 51

Metcalf, Michael, 52
migrating to Fortran 90, 44

data files, 48
object code, 47
source code, 44

migration tools
convert.f90, 52
f77, 49
f90, 49
fid, 50
ftnchk, 53
lintfor, 50
third-party tools, 52

MIN intrinsic, 55
modules, compiling, 29
Moniot, Robert, 53
MP_NUMBER_OF_THREADS,

22
multiprocessor machine, 19, 22
multi-threaded programming,

23

N
NAMELIST statement, 57
new features, 12

NLSPATH environment
variable, 37

NO SIDE EFFECTS directive,
22, 41

NODEPCHK compiler directive,
21, 43

NODEPCHK directive, 21
null-terminated strings, 61

O
object code, migrating, 47
ON statement, 58, 75
OPEN statement, 51
optimization, 38, 71

OPTIONS statement, 18
parallelization, 19, 20, 22, 39
restrictions and problems, 75
vectorization, 20

OPTIMIZE directive, 35
OPTIONAL statement, 55
OPTIONS statement, 18

P
parallelization, 20, 22, 39, 75

+Oparallel option, 19
compiling, 39
conditions inhibiting, 40
data dependence, 41
indeterminate loop counts, 41
profiling, 40
side effects, 40

PARAMETER statement, 56
PA-RISC 1.0 architecture, 24
passing arguments in C and

Fortran, 61
passing strings to C, 61
pathnames of libraries, 37
PBO not supported, 75
POINTER (Cray) statement, 75
porting

Cray, 13, 16, 19
KAP, 19

82 Index

Index

VAST, 19
PRINT statement, 13, 16
procedures

called by ON statement, 75
calls and definitions, 55
incompatibilities, 55
interface, 47
recursive, 56

product numbers, 74
Profile Based Optimization not

supported, 75
profiling parallel-executing

programs, 40
PROGRAM statement, 58
pure-data files, 13, 16

R
READ statement, 13, 16
REAL intrinsic, 57
RECURSIVE keyword, 56
REF built-in function, 61
restrictions

+autodbl option, 76
+O4 option, 75
Cray-style pointers, 76
debugging, 75
ON statement, 75
optimization, 75
parallelization, 75
Profile Based Optimization, 75
Softbench support, 75

S
SETPOS routine, 14, 17
side effects and data

dependence, 41
side effects and parallelization,

40
size information, 69
Softbench support, 75
Software Status Bulletin

information, 74

source code, migrating, 44
SSB information, 74
statement functions, 55
statements

ACCEPT, 13, 16
BUFFER IN, 13
BUFFER OUT, 16
DATA, 56
EXTERNAL, 47
NAMELIST, 57
ON, 58, 75
OPEN, 51
OPTIONAL, 55
OPTIONS, 18
PARAMETER, 56
POINTER (Cray), 75
PRINT, 13, 16
PROGRAM, 58
READ, 13, 16
TYPE, 13, 16
WRITE, 13, 16

stream I/O, 67
stream pointers, 67
strings and C, 61
support information, 74
swinstall command, 69
syntax for f90 command, 28
system calls, 66
SYSTEM INTRINSIC directive,

55

T
temporary files, 36
threads, 23
thread-safed libraries, 23
TIME intrinsic, 55
TMPDIR environment variable,

36
tools for migrating

HP-supplied, 49
third-party, 52

tty buffering, 36

TTYUNBUF environment
variable, 36

TYPE statement, 13, 17

U
uninitialized variables, 50
UNIT function, 14, 17
unit numbers, 67

C's file pointer, 63
Upgrading to Fortran 90, 52
USENET group on Fortran, 52

V
VAL built-in function, 61
vectorization, 20
VECTORIZE directive, 20

W
warning messages, 38
websites, 71, 74
WRITE statement, 13, 16

