
© 2005 Bradford Learning, Inc. (v 3.1) 7-1

Chapter 7

vi

Objectives

In this chapter, we will learn about the text editor vi. Some Linux users feel that
vi is a difficult editor to use, especially with all of the cryptic commands that, at
times, aren’t very intuitive. However, vi is one of the only editors that is included
in just about every Linux distribution as well as other variants of Unix: the fact
that vi is ubiquitous merits a basic understanding of this text editor. At the end of
this chapter, you should be able to:

• Identify Linux text editors (e.g. vi)

• Understand and distinguish the three types of modes in vi: command,
insert, and execute

• Navigate within a text file using vi commands

• Open, edit, and save documents in vi

• Find/change words using global replacement and regular expressions in vi

• Split screens horizontally and vertically in vi

• Diff files using vimdiff and :diffsplit

• List and navigate buffers

VI LPI 101 EXAM PREPARATORY COURSE

 7-2 (v 3.1) © 2005 Bradford Learning, Inc.

Linux Text Editors: vi

Mastering a text editor is an essential component of becoming proficient at Linux
system administration. Editing configuration files and writing scripts are common
tasks to effective system administration. The text editors available for Linux are
powerful and sometimes quite complex. While mastering a text editor can take
time and patience, the rewards are great.

There are various text editors available with Linux. These include:

• vi

• emacs and xemacs

• jed

• joe

• jove

• pico

• ed

• plus many more...

In order to edit any file, naturally we need to become somewhat proficient in
using a Linux text editor. In this session we will cover vi, due to the fact that
nearly every distribution of Linux and UNIX includes vi by default.

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-3

Basic vi

The term vi means the visual interface to the ex line editor. ex is the extended
version of ed. ed was the original UNIX line editor. The ex and ed line editors
were suited to use on paper based teletype devices (commonly used before the
advent of VDTs — Video Display Terminals).

In practice vi and ex are links to the same program. This program sets its initial
operating mode based on the name under which it was invoked. The commands
used in vi are also the same ones used by other Linux commands such as less,
and several of the common E-Mail programs such as elm and mutt.

Most Linux systems use a clone of the original vi editor. Thus the vi command is a
link to one of these newer versions of vi, such as nvi (new vi) or vim (vi
improved).

vi modes

The vi editor has three modes: command, insert, and ex. You switch into
command mode with the Esc key. Command mode is used to issue commands
such as copy or delete, moving within the file, and changing to insert mode.
Insert mode allows you to add text to a document. You can go from command
mode to ex mode by pressing the colon (:) key; this will allow you to enter
advanced commands at the bottom line.

When a file is first opened vi is in command mode. To change to insert mode
simply type i. To return to command mode use the Esc key.

vi commands are usually given as <command> <text movement> — which
executes most commands a specified number of times over all text enclosed by
the movement. Therefore a command like dj deletes the current line and the
next line (since by default the command is executed once, but the j command
encloses the current and next lines).

VI LPI 101 EXAM PREPARATORY COURSE

 7-4 (v 3.1) © 2005 Bradford Learning, Inc.

Figure 7.1 • The vim program.

Files are created and opened by using the following command:

If the file does not exist, it will be created and opened for editing. If the file does
exist, it will be opened for editing.

To close a file you must first enter command mode using Esc. You then have
several options:

$ vi Opens a new file in the current
directory.

$ vi <file> Opens a new file with the specified
name.

$ vi <file1> <file2> <file3> Opens/creates file1, file2, and file3.

$ vi /path/to/file Opens file with that path.

$ vi +/string /path/to/file Opens file and takes to first instance of
string.

$ vi +"set number" /path/to/file Opens file and puts non-printing line
numbers on every line.

ZZ or :wq Save and quit.

:w [<filename>] Save only, with optional new filename.

:w! [<filename>] Save/overwrite a file.

:q! Quit without saving edits.

:e! Return to the last saved version of a file without edits.

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-5

Having learned how to open and close files, you are ready to begin to investigate
some features of vi.

Moving Within a File

Move the cursor one character at a time is using the arrow keys in insert and
command mode.

Moving within a line:

Moving within text:

:w <filename-new> Write the contents of the current file/buffer to a new file.

:e file2 Edit a new file without leaving vi.

:n Next file; used when multiple files are specified.

H move to the top of the screen

G move to the end of the file

L move to the bottom of the screen

h one character to the left

j one character down

k one character up

l one character to the right

Using a number with the letter will move the cursor that
many spaces, for example 3h will move the cursor 3
spaces to the left.

0 move the cursor to the beginning of a line

$ move the cursor to the end of a line

^ go to the first word on a line

b go back one word at a time; punctuation/symbols are counted as words

B go back one word at a time; punctuation/symbols are not counted as words

w go forward one word at a time; punctuation/symbols are counted as words

W go forward one word at a time; punctuation/symbols are not counted as words

VI LPI 101 EXAM PREPARATORY COURSE

 7-6 (v 3.1) © 2005 Bradford Learning, Inc.

To edit text, there are several modes available. They include:

Editing commands can be combined to move blocks of text. For example, one
could remove 3 lines of text at the beginning of a file (3dd), then put it at the end
of the file with Gp.

i insert

a append

c change

r replace

d delete (vi saves the last nine line deletions)

dw delete word

dd delete line

cw change a word

x delete the character the cursor is on

y yank (copy) text; can be used with letters yw, lines (yy only yanks the
current line: i.,e. 4yy yanks the next 4 lines)

p put (paste) text after the current line (put back a past line deletion with
the p + deletion number, for example p3 will put back the third from the
last deletion)

P put (paste) text before the current line

u undo the last command

J join two lines of text

Use the :set nu command to turn on line numbering.

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-7

Advanced Functions

Global Replacement and Regular Expressions

The command for searching is / both in interactive command and in ex mode.
What is to be searched for is defined with a regular expression, which may be
just a word. A search in command mode will jump to the first matching word; in
ex mode it will jump to the line of the first match. It is possible to replace or
delete patterns within a file using the command in conjunction with regular
expressions.

A single substitute command has the syntax:

:s/old/new
To make this global over the line, add the g flag:

:s/old/new/g
It is also possible to replace instances by prefixing the s command with line
numbers

:10,50s/old/new/g
 To do this with the entire file:

:1,$s/old/new/g
or

:%s/old/new/g

VI LPI 101 EXAM PREPARATORY COURSE

 7-8 (v 3.1) © 2005 Bradford Learning, Inc.

This can be particularly useful if a DOS file containing carriage returns needs to
be “converted”

:%s/^M//g
If you’d like the option to confirm each substitution use the c flag

:1,15s/Linux/UNIX/gc

The set Command

There are several options, which come in three types: boolean (on|off), numeric
or string. To see what the active options are, give the command:

:set all

The .exrc File

Many options in vi can be set in the ~/.exrc file, which vi reads each time it is
started.

Listing 7.1 • A simple .exrc.

" exrc source
" set the tab stops to four
set tabstop=4
" have line numbers
set number
"
" set the distance from the right margin where a

" line wrap will be
set wrapmargin=15
" turn off wrapmargin (wm=wrapmargin)
" set wm=0
"
set showmode
set scroll=20
set autoindent
...

Executing Commands

Linux commands can be displayed or entered while editing with vi. The ! tells ex
to create a shell and regard what follows as a command, e.g.:

:!ls
:!date

The output can be read into the file with the r option.

:r !date

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-9

Splitting Windows

A useful function in vi is the ability to split a screen, allowing you to view two
different files or view two different locations of the same file at the same time. To
split the window, use the :split command. Using the :split command by itself
will split the screen horizontally, with the top section being the active window. To

switch between windows, us the CTRL-w w1 command.

To split a window to show two different files is as simple as specifying the name
of the second file after the :split command:

:split file_B
The new window on top will contain the contents of the second file (in this case,
file_B).

If viewing documents side by side is more to your liking, then you can split a
window vertically with the :vsplit command. :vsplit uses the same syntax as
:split and accepts file names as well.

While you can use the regular commands (i.e. ZZ, :wq, :q!, etc.) to quit out of an
active window, it’s best to use the :close command to prevent the accidental
quitting out of vi if you are in the last window. The :only command will close all
windows, except the active one.

With the ability to split screens to your heart’s delight, you will need to know how
to navigate through all of these windows.

You can split a window as many times you want,
referencing as many files as you want!

1. To execute this command, hold down Ctrl and tap w, and then press w again.

To open multiple files each with their own window, use
the -o option:

vi -o file_A file_B file_C

The -O option will split the windows vertically.

VI LPI 101 EXAM PREPARATORY COURSE

 7-10 (v 3.1) © 2005 Bradford Learning, Inc.

Here is a list of commands you can use to navigate the windows:

These commands re-position active windows:

Finally, there are some all-inclusive commands that, when issued, will affect all
windows (active and otherwise). These commands are similar to regular vi
commands, but have an “all” suffix:

Table 7.1 • Command summary for split windows in vi.

CTRL-W h move to the window on the left

CTRL-W j move to the window below

CTRL-W k move to the window above

CTRL-W l move to the window on the right

CTRL-W t move to the top window

CTRL-W b move to the bottom window

CTRL-W H move window to the far left

CTRL-W J move window to the bottom

CTRL-W K move window to the top

CTRL-W L move window to the far right

:wall write all :wqall write and quit all

:qall quite all :qall! exit vi without changing files

Splitting Windows

:split Splits screen horizontally.

:vsplit Splits screen vertically.

vi -o Starts vi and automatically splits window horizontally.

vi -O Starts vi and automatically splits window vertically.

Window Navigation

CTRL-W h Move to the window on the left.

CTRL-W j Move to the window below.

CTRL-W k Move to the window above.

CTRL-W l Move to the window on the right.

CTRL-W t Move to the top window.

CTRL-W b Move to the bottom window.

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-11

Diffs

The diff option in vi allows you to compare the changes in a file. For example, if
you edited file_A and created a backup file called file_A~, then you can view
the differences between them using vi’s diff capability. Diffing files with vi can
happen in two ways: outside of vi (i.e. on the command line) or from within vi.

To diff a file on the command line, use the vimdiff program:

$ vimdiff file_C file_A~
While in vi, use the diffsplit operator to diff files:

$ vi file_A
:diffsplit file_A~:

When viewing the files, you will notice the differences in the files: deleted lines
are shown as a series of dashes, changed text is highlighted, etc. A nice feature
of vi’s diff capability is the way that shows a few lines before and after indicated
changes, allowing you to understand the context of the change.

Window Ordering

CTRL-W H Move window to the far left.

CTRL-W J Move window to the bottom.

CTRL-W K Move window to the top.

CTRL-W L Move window to the far right.

Window Commands

:wall Write all.

:qall Quite all.

:wqall Write and quit all.

:qall! Exit vi without changing files.

:close Close active window.

:only Close all inactive windows.

To diff the files vertically, do the following:

:vertical diffsplit file_C~

VI LPI 101 EXAM PREPARATORY COURSE

 7-12 (v 3.1) © 2005 Bradford Learning, Inc.

Figure 7.2 • Diffing files in vi.

Buffers

Technically, a buffer is a copy of the file that is currently being edited and when
you save the file, the changes in the buffer are made to the original file. Buffers
contain the changes/edits being made to the file as well as the preferences and
settings for that particular file. Also, if you open multiple files, then you will also
open multiple buffers (one per file). There are two types of buffers:

• hidden

• inactive

Hidden buffers are just that: buffers that are hidden from view. For example, if
you were editing file_A and you wanted to edit file_B without losing or
committing the changes to file_A, then you could execute the command:

:hide edit file_B
This command would place the buffer for file_A in the background (therefore
making it “hidden”) and bring up the buffer for file_B. The changes in the buffer
for file_A have neither been lost nor committed to the file.

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-13

Inactive buffers are buffers that are neither active nor hidden; however, some of
their attributes are still kept by vi.

Listing Buffers

If you are editing multiple files, list the current open buffers with the :buffers or
:ls commands.

:buffers
1 %a “file_A” line 1
2 “file_B” line 5
3 # “file_C” line 122
4 “file_abc” line 47

When referencing open buffers, you can identify the buffer you want to edit the
buffer number, instead of its name. Notice the %a after in the first buffer entry:
this indicates that file_A’s buffer is currently open. Other flags include:

Editing Buffers

As mentioned before, you use the :buffers or :ls commands to list open
buffers; to switch between open buffers, use the :buffer command. The buffer
you want to edit can be specified in three ways:

• buffer number: :buffer 1

• buffer name: :buffer file_A

• partial buffer name: file_ab

When using the partial buffer name, vi will search for the first file that matches
the given string. You can also move between buffers even if you don’t know their
numbers or names.

% current buffer

alternate buffer

a buffer is loaded and displayed

h buffer is loaded but hidden

= buffer is read-only

- buffer is not modifiable, the “modifiable” option is off

+ buffer has been modified

VI LPI 101 EXAM PREPARATORY COURSE

 7-14 (v 3.1) © 2005 Bradford Learning, Inc.

The following commands allow you to navigate incrementally within the buffers:

Buffers can be removed from the list using the :bdelete command:

:buffers
1 %a “file_A” line 1
2 “file_B” line 5
3 # “file_C” line 122
4 “file_abc” line 47
:bdelete 2
:buffers
1 %a “file_A” line 1
2 # “file_C” line 122
3 “file_abc” line 47

:bnext next buffer

:bprevious previous buffer

:bfirst go to the first buffer

:blast go to the last buffer

LPI 101 EXAM PREPARATORY COURSE VI

© 2005 Bradford Learning, Inc. (v 3.1) 7-15

Summary

• vi is bundled with just about every Linux distribution available

• vi has three modes: command, insert, ex (execute)

• Use the following commands to open, save, and quite a file in vi:

• ZZ or :wq: Save and quit

• :w [<filename>]: Save only, with optional new filename

• :w! [<filename>]: Save/Overwrite a file

• :q!: Quit without saving edits

• :e!: Return to the last saved version of a file (not save any edits)

• :w <filename-new>: Write the contents of the current file (buffer) to a
new file

• :e file2: Edit a new file without leaving vi

• Use the following keys to navigate within a file:

• H: Move to the top of the screen

• G: Move to the end of the file

• L: Move to the bottom of the screen

• h: One character to the left

• j: One character down

• k: One character up

• l: One character to the right

• While in the command and execute mode, use / to find words

• Options for vi are set in the ~/.exrc file

• Split vi windows using the :split and :vsplit commands

• The following commands affect all windows, both active and inactive:

• :wall: write all

• :wqall: write and quit all

• :qall: quite all

• :qall!: exit vi without changing files

• Diffs can be executed from the command line with the vimdiff utility or vi’s
:diffsplit command

• List active buffers with the :buffers or :ls commands

VI LPI 101 EXAM PREPARATORY COURSE

 7-16 (v 3.1) © 2005 Bradford Learning, Inc.

