LOAD CHARACTERISTIC OF
ALTERNATIVES

At no load, V_t depends on speed and I_f.

Load Alternator with leading lagging and unity F_p loads
R constant and I_f constant for each type of load.

Reason why V_t changes

1. R_a
2. Armature reaction
3. Armature reactance

With Resistive load $F_p = 1.0$, $V_t = \frac{V_{oc}}{R + X_f}$

V_t = drop increases as I increases
X_f = reactance due to armature reaction
X_L = leakage reactance V_t decreases

With Inductive load F_p lagging

IR drop fixed

Increases effects of $(X_f + X_L)I$ drop V_t decreases

With Capacitive load F_p leading

IR drop exists
I_x adds to E_f

Leading angle on current causes $V_t > E_f$ without change in field current.

Armature reactance negated also: field is increased as load increases V_t increases.
Voltage regulation

\[
\%\text{VR} = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%
\]

- \(V_{NL}\) = No-load terminal voltage
- \(V_{FL}\) = Full load terminal voltage

\(V_{FL} = 208\) at Rated speed 1800 RPM for all loads

\(V_{NL}\) = Voltage at terminals of machine when load is removed

Can have negative voltage regulation

- \(\%\text{VR}\) indicates a leading load where \(V_{D}\) across machine increases Terminal Voltage.
5.) Define voltage regulation of alternator with an equation and in words. Explain why a negative voltage regulation can occur and what it means in terms of terminal voltage.