Lesson 12: Parallel Transformers and Autotransformers

ET 332b Ac Motors, Generators and Power Systems

Learning Objectives

After this presentation you will be able to:
> Explain what causes circulating currents in parallel and compute its value.
> Compute the load division between parallel transformers.
> Explain how autotransformers operate
> Make calculation using ideal autotransformer model

Parallel Operation of Transformers

Where: $\mathrm{E}_{\mathrm{A}}=$ operating voltage of
transformer A $\mathrm{E}_{\mathrm{B}}=$ operating voltage of transformer B
$\mathrm{Z}_{\mathrm{A}}=$ series impedance of A
$Z_{B}=$ series impedance of B

When voltage ratios are not equal, currents circulate between the windings of each transformer without a load connected. Circulating currents reduce the load capacity of transformer on the voltage difference and transformer impedance even with no load
$I_{c}=\frac{E_{A}-E_{B}}{Z_{A}+Z_{B}}$ Z

Currents circulate between A and B based

Capacity Loss Due to Circulating Currents

Find effects using superposition

Transformer A current
$\mathrm{I}_{\mathrm{TA}}=\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{c}}$
Transformer B current
$\mathrm{I}_{\mathrm{TB}}=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{c}}$
I_{c} driven by $\mathrm{E}_{\mathrm{A}}-\mathrm{E}_{\mathrm{B}}$
Adding circulating current to transformer A increases total current in winding. Not seen in load current.
Can cause overload

Circulating Current Example

Example 12-1: Two 100 kVA single phase transformer operated in parallel.

Nameplate data:

Transformer	V-ratio	\%R	$\% \mathrm{X}$
A	$2300-460$	1.36	3.50
B	$2300-450$	1.40	3.32

Find I_{c} magnitude and I_{c} as percent of transformer secondary ratings

Example 12-1 Solution (1)

Use per unit method $-\mathrm{V}_{\text {base }}=$ secondary voltage

$$
\begin{array}{ll}
V_{b}=460 \mathrm{~V} & V_{T X A}=\frac{V_{R}}{V_{b A}}=\frac{460 \mathrm{~V}}{46 \mathrm{~V}}=1.0 \mathrm{p} \cdot \mathrm{u} . \\
V_{T \times B}=\frac{V_{R}}{V_{b B}}=\frac{450 \mathrm{~V}}{460 \mathrm{~V}}=0.9783 \mathrm{pu.} .
\end{array}
$$

Find $Z_{A}+Z_{B}$ in pu.
$\bar{z}_{A}=1.36+3.50 \mathrm{j} \% / 100 \% \quad \bar{z}_{B}=1.40+3.32 \mathrm{j} \% / 100 \%$
$\bar{z}_{A}=0.0136+0.035 \mathrm{f}$ pu. $\quad \bar{z}_{B}=0.0140+0.0332 \mathrm{jpu}$

$$
\begin{gathered}
\bar{Z}_{A}+Z_{B}=(0.0136+0.035 \mathrm{j})+(0.01410 .0332 \mathrm{~g}) \text { p.u. } \\
\bar{Z}_{A}+Z_{B}=0.0276+0.0682 \mathrm{y} \mathrm{p.u.} \\
\bar{Z}_{A}+\bar{Z}_{B}=0.07357 / 67.92^{\circ} \mathrm{Pu}
\end{gathered}
$$

Example 12-1 Solution (2)

Use formula

Convert per unit to percent

$$
29.55 \% \text { of Transformer A's }
$$

capacity is consumed by I_{c}.
Now convert this to amps using a base current

$$
I_{\text {base }}=\frac{S_{\text {base }}}{V_{\text {base }}}=\frac{100,000 \mathrm{VA}}{460 \mathrm{~V}}
$$

$$
I_{\text {base }}=217.9 \mathrm{~A}
$$

$$
\bar{I}_{\text {cart }}=\bar{I}_{0} I_{\text {base }} \quad \bar{I}_{\text {tact }}=0.2955 /-67.97^{\circ}(217.4 \mathrm{~A})=64.35 \angle-67.97^{\circ}
$$

Load Division Between Parallel Transformers

When turns ratios are equal, the load current divides following the winding impedance of the transformers. More current flows through the lowest impedance.

Circuit model

All Transformer Z's and Load Z referred to the same side of transformer or all per unit (\%) quantities
$\mathrm{Y}_{\mathrm{A}}=\frac{1}{\mathrm{Z}_{\mathrm{A}}}, \quad \mathrm{Y}_{\mathrm{B}}=\frac{1}{\mathrm{Z}_{\mathrm{B}}} \ldots \quad \mathrm{Y}_{\mathrm{k}}=\frac{1}{\mathrm{Z}_{\mathrm{k}}} \ldots \mathrm{Y}_{\mathrm{n}}=\frac{1}{\mathrm{Z}_{\mathrm{n}}}$
Use current divider rule
$Y_{p}=Y_{A}+Y_{B}+\ldots Y_{k}+\ldots Y_{n}$
$I_{k}=I_{i n} \cdot\left(\frac{Y_{k}}{Y_{p}}\right) \begin{aligned} & \text { Finds the current in } \\ & \text { the } \mathrm{k}^{\text {th }} \text { transformer }\end{aligned}$

Parallel Transformer Example

Example 12-2: A 100 kVA transformer is to be paralleled with a 200 kVA transformer. Each transformer has rated voltages of 4160240 V . Their percent impedances based on the ratings of each are:

$$
\begin{aligned}
& \mathrm{Z} \%=1.64+3.16 \mathrm{j} \% \quad 100 \mathrm{kVA} \\
& \mathrm{Z} \%=1.10+4.03 \mathrm{j} \% 200 \mathrm{kVA}
\end{aligned}
$$

Find: a) rated high side current of each transformer
b) $\%$ of total bank current drawn by each transformer
c) maximum bank load that can be handled without overloading either transformer

Example 12-2 Solution (1)

a) Rated current of both transformers

$$
\begin{aligned}
& I_{\text {rated } A}=\frac{S_{\text {ratod }}}{V_{\text {rated }}}=\frac{100,000 \mathrm{VA}}{4160 \mathrm{~V}}=24.04 \mathrm{~A} \quad \text { Transformer A: } 100 \mathrm{kVA} \\
& I_{\text {rated } B}=\frac{200,000}{4160 \mathrm{~V}}=48.08 \mathrm{~A} \quad \text { Transformer B: } 200 \mathrm{kVA}
\end{aligned}
$$

b) Percent current drawn by each transformer

Convert \%Z to actual ohms. Need base impedances

$$
\begin{aligned}
& Z_{\text {base } A}=\frac{\left(V_{\text {baseA }}\right)^{2}}{S_{\text {base } A}}=\frac{(4160 \mathrm{~V})^{2}}{100,000 \mathrm{VA}}=173.1 \Omega \\
& Z_{\text {baseB }}=\frac{\left(V_{\text {baseB }}\right)^{2}}{S_{\text {base } B}}=\frac{(4160 \mathrm{~V})^{2}}{200,000 \mathrm{VA}}=86.53 \Omega
\end{aligned}
$$

Example 12-2 Solution (2)

pie.

$$
\begin{array}{ll}
\bar{Z}_{A}=0.0164+0.0316 j & \bar{Z}_{A}=0.0356 / 62.6^{\circ} \mathrm{Pu} \\
\bar{Z}_{B}=0.011+0.0403 \mathrm{j} & \bar{Z}_{B}=0.0418 \angle 24.7^{\circ} \mathrm{Pu}
\end{array}
$$

Convert pu. to ohms

$$
\begin{aligned}
& \bar{Z}_{A}=Z_{\text {base }} \bar{Z}_{A}=(173.1 \Omega)\left(0.0356\left(\Omega 2.6^{\circ}\right)\right. \\
& \bar{Z}_{A}=6.161162 .6^{\circ} \Omega \\
& \bar{Z}_{B}=Z_{\text {base }} \bar{Z}_{B}=(86.53 \Omega)\left(0.0918 / 74.7^{\circ}\right) \\
& \bar{Z}_{B}=3.617 \angle 74.7^{\circ} \Omega
\end{aligned}
$$

Example 12-2 Solution (3)

Find the admittance $\quad Y_{p}=\frac{1}{\bar{z}_{A}}+\frac{1}{\bar{z}_{B}}$

$$
Y_{\varphi}=\frac{1}{6.161162 .7^{0}}+\frac{1}{3.615 \angle 74.7^{0}}
$$

$Y_{p}=0.1623\left(-62.2^{\circ}+0.2266\left(-79.2^{\circ} \mathrm{S}\right.\right.$
$Y_{p}=(0.0744-y 0.1442)+(0.073 x-y 0.2668) \mathrm{s}$
$Y_{p}=0.1474-y 0.411 \mathrm{~s}$
$Y_{p}=0.4366 \quad-70.3^{\circ} \delta$ Total admittance.
Now use current divide rule to find flows through each transformer.

Example 12-2 Solution (4)

Find I_{A} and I_{B} in terms of $I_{i n}$ $\vec{Y}_{A}=\frac{1}{\bar{z}_{A}}=0.16231-6.2^{\circ} \mathrm{s}$ $\bar{Y}_{B}=\frac{1}{\bar{Z}_{B}}=0.2766\left[-79.7^{\circ} \mathrm{S}\right.$

$$
\begin{aligned}
& \left|\bar{I}_{A}\right|=\left|\bar{I}_{I N}\right| \cdot \frac{\left|\bar{Y}_{A}\right|}{\left|\bar{Y}_{P}\right|} \quad\left|\bar{I}_{A}\right|=I_{1 N}\left[\frac{0.1623 \mid 62.7^{\circ}}{0.9366[-70.3}\right] \quad I_{A}=I_{1 N} 0.3717 \\
& \left.\left|\bar{I}_{B}\right|=\left|\bar{I}_{1 N}\right| \cdot\left|\frac{\left|\bar{Y}_{B}\right|}{\left|\bar{Y}_{P}\right|} \quad\right| \bar{I}_{B} \right\rvert\,=I_{1 N}\left[\frac{0.2766\left[-79.7^{\circ}\right.}{0.4366\left[-70.3^{\circ}\right.}\right] \quad I_{B}=I_{1 N} 0.6335
\end{aligned}
$$

Example 12-2 Solution (5)

Transformer A carries 37.17% of the total load

$$
I_{A}=I_{, N} \cdot 0.3717
$$

Transformer B carries 63.35% of the total load

$$
I_{B}=I_{1 N} 0.6335
$$

c) Find the maximum load of the parallel transformers without an overload

Let $I_{A}=I_{\text {rated }}=24.04$ A and compute $I_{\text {in }}$ using relationships above. Then find flow through other transformer

$$
I_{A}=0.3717 I_{i N} \frac{I_{A}}{0.3717}=I_{\text {iN }} \frac{29.04}{0.3717}=I_{\text {iN }} \quad 64.68 A=I_{i}
$$

Example 12-2 Solution (6)

$$
\begin{aligned}
& I_{B}=0.6335 I_{1 N} \\
& I_{B}=0.6335(64.68 \mathrm{~A}) \\
& I_{B}=40.97 \mathrm{~A} \\
& \begin{array}{c}
\text { TX B not } \\
\text { overloaded } \\
I_{\text {rated }}=48.08
\end{array}
\end{aligned}
$$

Let $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\text {rated }}=48.08 \mathrm{~A}$. Find I_{in} and $\quad I_{B}=0.6335 I_{i N}$
then compute the flow in transformer A

$$
\frac{I_{B}}{0.6335}=I_{\text {iN }} \quad \frac{48.08 \mathrm{~A}}{0.6335}=I_{\text {iN }} \quad 75.9 \mathrm{~A}=I_{\text {iN }}
$$

Example 12-2 Solution (7)

$$
\begin{array}{ll}
I_{A}=0.3717 I_{1 N} & I_{A}>I_{\text {rated }} \mathrm{A} \\
I_{A}=0.3717(75.9 \mathrm{~A}) & 28.2>28.04 \mathrm{~A} \\
I_{A}=28.2 \mathrm{~A} & \text { Max load, } \mathrm{I}_{\mathrm{in}}=64.68 \mathrm{~A}
\end{array}
$$

Find bank power $S_{\text {BANK }}=V_{\text {rated }} I_{\text {IN }} \quad V_{\text {rated }}=4160 \mathrm{~V}$

$$
I_{I N}=64.68 \mathrm{~A}
$$

$$
S_{B A N K}=(4160 \mathrm{~V})(64.68 \mathrm{~A})
$$

$$
S_{\text {DANK }}=269,069 \mathrm{VA}
$$

$$
\approx 2 C 9 \mathrm{kVA}
$$

Autotransformers

Autotransformers use a single taped coil to change voltage levels and current levels - They provide no electrical isolation

$\mathrm{N}_{\mathrm{LS}}=$ number of turns
"embraced" by low side
$\mathrm{N}_{\mathrm{HS}}=$ number of turns on high side

Polarity of induced voltages determined by direction of current and winding wraps.

$$
\begin{array}{lr}
\text { If } \mathrm{N}_{\mathrm{LS}}=20 \text { and } \mathrm{N}_{\mathrm{HS}}=80 & \text { Step-down action } \\
\mathrm{a}=\frac{\mathrm{N}_{\mathrm{HS}}}{\mathrm{~N}_{\mathrm{LS}}}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{~V}_{\mathrm{LS}}} \quad \mathrm{a}=\frac{80}{20}=4 \quad \mathrm{~V}_{\mathrm{HS}}=120 \mathrm{~V} & \text { so } \quad \mathrm{V}_{\mathrm{LS}}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{a}}=\frac{120}{4}=30 \mathrm{~V}
\end{array}
$$

Autotransformers: Step-Down Operation

Some load is transferred via conduction from one side to the other and some is transferred by transformer action

Autotransformer connected in stepdown mode. Note direction of I_{tr}

Like two winding transformers

$$
\mathrm{S}_{\mathrm{HS}}=\mathrm{S}_{\mathrm{LS}}
$$

$$
\mathrm{V}_{\mathrm{HS}} \cdot \mathrm{I}_{\mathrm{HS}}=\mathrm{V}_{\mathrm{LS}} \cdot \mathrm{I}_{\mathrm{LS}}
$$

$\mathrm{I}_{\mathrm{tr}}=$ the current from transformer action

Low side current must increase to maintain power balance so:

$$
\mathrm{I}_{\mathrm{LS}}=\mathrm{I}_{\mathrm{HS}}+\mathrm{I}_{\mathrm{tr}}
$$

Autotransformer Current Ratio and Step-Up Operation

Current ratio of autotransformer $\quad \frac{\mathrm{I}_{\mathrm{HS}}}{\mathrm{I}_{\mathrm{LS}}}=\frac{1}{a} \quad$ Where $\mathrm{a}=\frac{\mathrm{N}_{\mathrm{HS}}}{\mathrm{N}_{\mathrm{LS}}}$
Autotransformer In Step-up Mode

Coils in these diagrams are series aiding
(induced voltages add)

Note: direction of I_{tr} reversed to maintain power balance

Autotransformers from Two-Winding Transformers

Autotransformer action can be obtained by proper connection of two winding transformer coils

For step-down mode

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{HS}}=\mathrm{N}_{1}+\mathrm{N}_{2} \\
& \mathrm{~N}_{\mathrm{LS}}=\mathrm{N}_{2} \\
& \mathrm{a}=\frac{\mathrm{N}_{\mathrm{HS}}}{\mathrm{~N}_{\mathrm{LS}}}=\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{~V}_{\mathrm{LS}}}
\end{aligned}
$$

Where: $\mathrm{N} 1=$ number of turns in primary (HV)
$\mathrm{N} 2=$ number of turns in secondary (LV)

Autotransformers from Two-Winding Transformers

Step-Down Connections

Find $V_{L S}$ with $V_{H S}=120 \mathrm{~V}, \mathrm{~N}_{1}=500$ and $\mathrm{N}_{2}=100$
$\mathrm{a}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{V}_{\mathrm{LS}}}$ Where $\mathrm{V}_{\mathrm{HS}}=120 \mathrm{~V}$

$$
\mathrm{a}=\frac{\mathrm{N}_{\mathrm{HS}}}{\mathrm{~N}_{\mathrm{LS}}}=\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{~V}_{\mathrm{LS}}} \quad \mathrm{a}=\frac{500+100}{100}=6 \quad \mathrm{~V}_{\mathrm{LS}}=\frac{\mathrm{V}_{\mathrm{HS}}}{\mathrm{a}}=\frac{120 \mathrm{~V}}{6}=20 \mathrm{~V}
$$

Autotransformer Example

Example 12-3: 400 turn autotransformer operating at a 25% tap supplies a 4.8 kVA load at 0.85 lagging P.F. $\mathrm{V}_{\mathrm{HS}}=$ 2400 V
Find:
a) load current b) incoming line current c) $\mathrm{I}_{\text {tr }}$ d) apparent power transformed and conducted

Example 12-3 Solution (1)

Find turns ratio

$$
\begin{aligned}
N_{H S}=400 t \quad & N_{L S}
\end{aligned}=0.25\left(N_{H S}\right), ~(400 t)
$$

Find secondary voltage
$\frac{V_{H S}}{V_{L S}}=a \quad V_{H S}=a V_{L S}$
$\frac{V_{\text {Ak }}}{a}=V_{C S} \quad \frac{2400 \mathrm{~V}}{4}=600 \mathrm{~V}$

Example 12-3 Solution (2)

b) Find high-side current
$\begin{aligned} & \text { Current must decrease to } \\ & \text { maintain power balance }\end{aligned} I_{1 / 5}+I_{t r}=I_{L S}$

$$
\frac{I_{H S}}{I_{L S}}=\frac{1}{a} \Rightarrow I_{N S}=\frac{1}{a} I_{L S} \quad I_{L S}=I_{L}=8 \mathrm{~A} \quad I_{H S}=\frac{1}{4}(8 \mathrm{~A})=2 \mathrm{~A}
$$

c) Find transformed current

$$
\begin{array}{ll}
I_{t r}=I_{L s}-I_{t s} \quad & I_{t r}=8-2 \mathrm{~A} \\
I_{t_{r}}=6 \mathrm{~A}
\end{array}
$$

d) Find transformed and conducted apparent powers

$$
\begin{array}{ll}
S_{t r}=V_{L S} I_{t r} & S_{t_{r}}=600 \mathrm{~V}(6 \mathrm{~A})=3600 \mathrm{VA} \\
S_{\text {condo }}=V_{L S} I_{H S} & S_{\text {cont }}=600 \mathrm{~V}(2)=1200 \mathrm{VA}
\end{array}
$$

End Lesson 12: Parallel Transformers and Autotransformers

ET 332b Ac Motors, Generators and Power Systems

