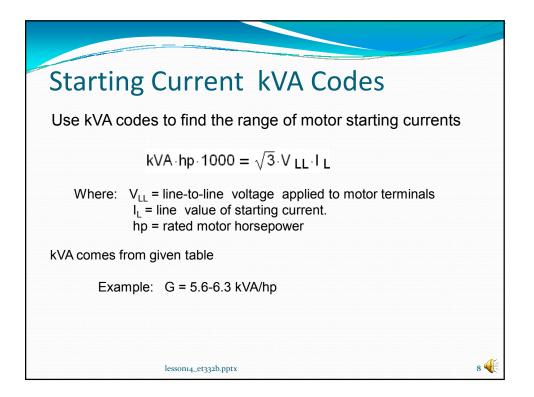
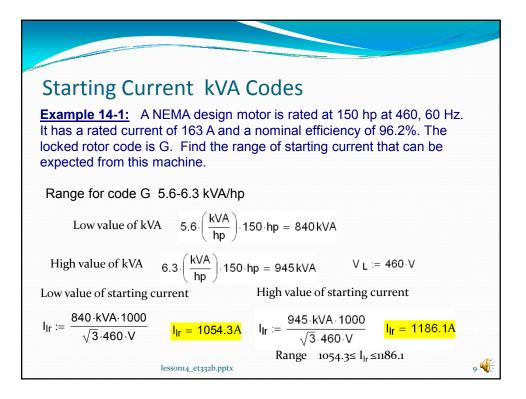
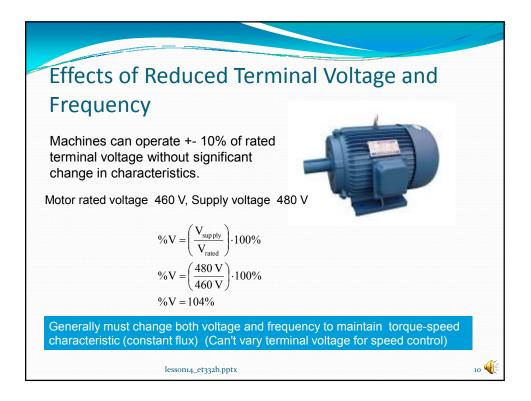
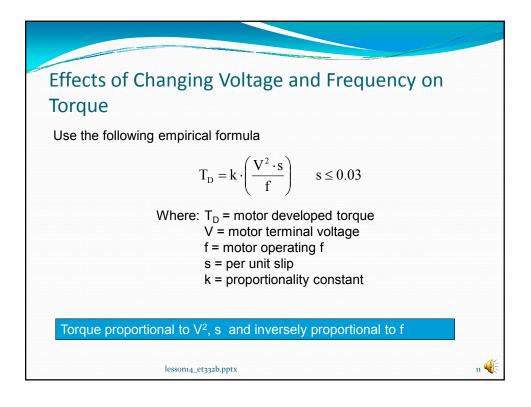


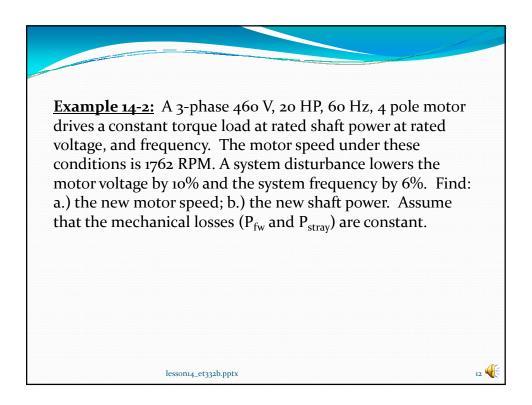
Different motor conductor designs given different rotor resistances, which gives different motor characteristics

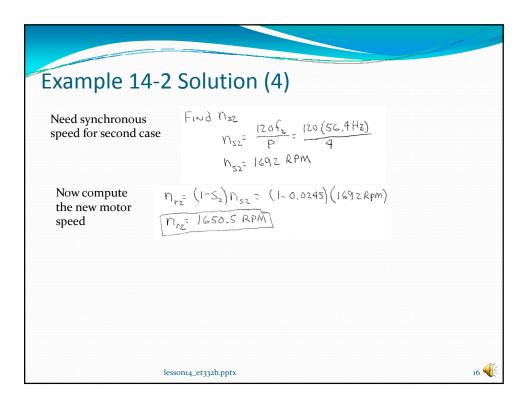


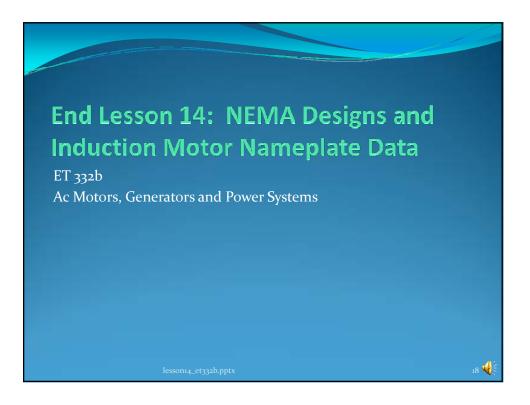







Motor Nameplate Data						
Code Letter kVA Table						
	Code Letter	kVA/hp	Code Letter	kVA/hp		
	А	0-3.15	К	8.0-9.0		
	В	3.15-3.55	L	9 .0- 10.0		
	С	3.55-4.0	М	10-11.2		
	D	4.0-4.5	Ν	11.2-12.5		
	Е	4.5-5.0	Р	12.5-14.0		
	F	5.0-5.6	R	14.0-16.0		
	G	5.6-6.3	S	16.0 -18.0		
	Н	6.3-7.1	Т	18.0 -20.0		
	J	7.1-8.0	U	20-22.4		
Above can be used to compute the			V	>22.4		
	arting current	· · · · ·				
	lesso	n14_et332b.pptx			7 📢	




Example 14-2 Solution (1)					
Define equations	s $T_{D_1^2} k \left[\frac{V_1 S_1}{f_1} \right] = T_{D_2^2} k \left[\frac{V_2^2 S_2}{f_2} \right]$				
	FOR CONSTANT TORQUE LOAD TDI= TDZ				
For 10% voltage	THER KNOW VALUES $f_1 = 60 \text{ Hz} V_1 = 460 \text{ V} \Omega_{r1} = 1762 \text{ Rpm} P = 4$ $V_2 = (1 - 0.1) \cdot 460 \text{ V} = 414 \text{ V}$				
reduction	$6 = 6 = 100 \text{ frequency}$ $f_2 = (1 - 0.06)(60 \text{ Hz}) = 56.4 \text{ Hz}$ Reduction				
Find s ₁ . This requir synchronous speec	in (leo DA)				
lesson14_et332b.pptx					

Example 1	4-2 Solution (2)	
Compute slip for 1 st case	$S_{1} = \frac{N_{S_{1}} - N_{P1}}{N_{S_{1}}} = \frac{(1800 - 17C2) RPM}{1800 RPM}$ $S_{1} = 0.0211$	
Constant torque load so equate torques	$W_{T}H_{T} = T_{D2}$ $k \left[\frac{V_{1}^{2} S_{1}}{F_{1}} \right] \circ K \left[\frac{V_{2}^{2} S_{2}}{F_{2}} \right]$	
Solve for s ₂	$\frac{V_{1}^{2}S_{1}}{f_{1}} = \frac{V_{2}^{2}S_{2}}{f_{2}}$ $\frac{f_{2}V_{1}^{2}S_{1}}{V_{2}^{2}f_{1}} = S_{2}$	
	lesson14_et332b.pptx	14

Example	14-2 Solution (3)	
Compute the value of s ₂	$\frac{(56.4 \text{ Hz})(960)^2(0.0211)}{(914)^2(60 \text{ Hz})} = 5_2$ 0.0245=52	
	USING PER UNIT QUANTITES $f_1 \in Railed = 1.0$ Vistated = 1.0 $f_2 = 1 - 0.06 = 0.94$ Vz 1.0-0.1= 0.9	
Per Unit produces the s result	same $\frac{(0.94)(1.0)^{2}(0.0211)}{(0.9)^{2}(1.0)} = S_{2}$ 0.0245 = S ₂	
	lesson14_et332b.pptx	15

Example 14-2 Solution (5)						
Solve part b. P_1 =rated horsepower=20 hp	T_{s_1} = shaft torque state 1 T_{s_2} = shaft torque state 2					
For constant torque load $T_{s_1}=T_{s_2}$						
For T (164) $ \frac{P_{1}}{P_{2}} = \frac{T_{s_{1}}n_{r_{1}}}{\frac{5252}{5252}} SINCE \\ \frac{T_{s_{2}}n_{r_{2}}}{5252} T_{s_{1}}^{-1} T_{s_{2}}^{-1} T_{s_{2}} $	$\frac{P_{1}}{P_{2}} = \frac{N_{c1}}{n_{c2}} \Rightarrow P_{1} = \frac{N_{c1}}{n_{c2}}P_{2}$ $P_{2} = \left[\frac{N_{c2}}{n_{c1}}\right]P_{1}$					
$P_{z} = \left[\frac{1650.5 \text{ RPM}}{1762 \text{ RPm}}\right] 20 \text{ hp}$ $P_{z} = 18.73 \text{ hp}$						
lesson14_et332b.pptx 17						

