Lesson 21: Alternator Capabilities and Mechanical Power Control

ET 332b Ac Motors, Generators and Power Systems

Learning Objectives

After this presentation you will be able to:

- > Explain the power balance in and alternator.
- Identify the operating region of an alternator's capability curve.
- Explain how a governor controls mechanical power input to an alternator
- > Compute governor droop.

Lesson 21_et332b.pptx

1

Power Balance in Alternators

Power Balance in Alternators

Most alternators supply reactive power also so F_p changes up to approximately 80% leading Prime mover sized to handle largest active power load expected plus losses

Maximum active power load occurs When $F_p = 1.0$ so $S_{rated} = P_{out}$

Mechanical Power Input Control

<u>Governor</u> - electromechanical speed control used to maintain constant speed as machine power load changes

Power transfer between parallel alternators is controlled by change in prime-mover power input and speed. If speed remains constant, then torque increases as developed power increases

Governor Characteristic and Speed Regulation

Governor Speed Regulation

 $GSR = \frac{n_{nl} - n_{rated}}{n_{rated}} = \frac{f_{nl} - f_{rated}}{f_{rated}}$

Where n_{nl} = no-load speed of machine (rpm) n_{rated} = rated machine speed (rpm) f_{rated} = rated frequency (Hz) f_{nl} = no-load frequency (Hz)

<u>**Prime-mover Governor Characteristic**</u> – relates speed (frequency) change to alternator power output

Lesson 21_et332b.pptx

<section-header><section-header><equation-block><equation-block><text><text>

