Lesson 2: Review of AC circuit Analysis

Ac Motors, Generators and Power
Systems

Learning Objectives

After this presentation you will be able to:
> Compute impedances for circuit elements given values of capacitance, inductance and resistance

- Simplify series and parallel impedances
> Use the current divider and voltage divider rules in ac circuits
> Solve series and parallel ac circuits using phasors

Impedance Diagrams

The resistor has zero phase shift. It is represented by:

$$
\mathbf{R}=\mathbf{R} \angle 0^{\circ}
$$

Reactance of inductors and capacitors
Inductive reactance

$$
\begin{aligned}
& \overline{\mathrm{X}}_{\mathrm{L}}=2 \pi \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{j} \\
& \overline{\mathrm{X}}_{\mathrm{L}}=\omega \cdot \mathrm{L} \cdot \mathrm{j}
\end{aligned}
$$

Phase shift of 90 degrees

$$
\mathbf{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}
$$

Capacitive reactance

$$
\begin{gathered}
\qquad \overline{\mathrm{X}}_{\mathrm{C}}=\frac{1}{2 \pi \cdot \mathrm{f} \cdot \mathrm{C} \cdot \mathrm{j}}=\frac{1}{\omega \cdot \mathrm{C} \cdot \mathrm{j}} \\
\frac{1}{\mathrm{j}}=-\mathrm{j} \quad \text { so } \quad \overline{\mathrm{X}}_{\mathrm{C}}=-\mathrm{j} \cdot\left[\frac{1}{2 \pi \cdot f \cdot \mathrm{C}}\right] \\
\text { Phase shift of -90 degrees } \quad \mathbf{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{C}} \angle-90^{\circ}
\end{gathered}
$$

Series Impedances: R-L circuits

The R-L impedance triangle

Series R-L circuits

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{R}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{L}} \\
& |\mathbf{Z}|=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}} \\
& \theta=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}\right)
\end{aligned}
$$

Phase angle will always be positive for series R-L circuit.

Series Impedances: R-C circuits

The R-C impedance triangle
Series R-C circuits

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{R}-\mathrm{j} \cdot \mathrm{X}_{\mathrm{C}} \\
& |\mathbf{Z}|=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}{ }^{2}} \\
& \theta=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}\right)
\end{aligned}
$$

Phase angle will always be negative for series R-C circuit.

General Series Impedances: R-L-C

 circuits

The net reactive effect can either be inductive (positive) or capacitive (negative). The reactive component with larger reactance magnitude with dominate the series combination

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{R}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{L}}-\mathrm{j} \cdot \mathrm{X}_{\mathrm{C}} \\
& |\mathbf{Z}|=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
& \theta=\tan ^{-1}\left(\frac{\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{R}}\right)
\end{aligned}
$$

Ac Circuit Analysis With Phasors

All circuit laws from dc analysis hold for phasor analysis of ac circuits

$$
\text { Ohm's Law } \quad \overline{\mathrm{V}}=\overline{\mathrm{I}} \cdot \overline{\mathrm{Z}} \quad \overline{\mathrm{Z}}=\frac{\overline{\mathrm{V}}}{\overline{\mathrm{I}}} \quad \overline{\mathrm{I}}=\frac{\overline{\mathrm{V}}}{\overline{\mathrm{Z}}}
$$

All theorems for dc circuit analysis are valid for phasors

Voltage divider rule for ac circuits- same formula as dc but with phasor quantities

$$
\overline{\mathrm{V}}_{\mathrm{o}}=\left(\frac{\overline{\mathrm{Z}}_{2}}{\overline{\mathrm{Z}}_{1}+\mathrm{Z}_{2}}\right) \cdot \overline{\mathrm{v}}_{\mathrm{in}}
$$

AC Circuit Analysis With Phasors

Example 2-1 Series Circuits: a) Find Z_{T} and I_{T} for the circuit shown with the following values: $\mathrm{X}_{\mathrm{L}}=7 \Omega, \mathrm{X}_{\mathrm{C}}=10 \Omega$, and $\mathrm{R}=20 \Omega$.
b) find the voltage across the series combination of X_{L} and X_{C} using the voltage divider rule.

Example 2-1 Solution (1)

$$
\begin{gathered}
\bar{Z}_{T}=R+j x_{L}-j x_{C} \\
\bar{Z}_{T}=2 \sigma+j \gamma-j 10 \cdot \Omega \\
\bar{Z}_{T}=20-j 3=20.22 \angle 8.53^{\circ} \Omega \quad \text { Answer } \\
E=100 \angle 0^{\circ} \\
I_{T}=\frac{100 \angle 0^{\circ}}{20.22 \angle-8.53^{\circ}}=4.9416 \angle 8.53^{\circ} \mathrm{A} \quad \text { Answer }
\end{gathered}
$$

Example 2-1 Solution (2)
Component voltage drops

$$
\begin{aligned}
& \bar{V}_{R}=\bar{I}_{T} R=4.946 \angle 8.53^{\circ}\left(20 \angle 0^{\circ}\right)=98.92 \angle 8.53^{\circ} \mathrm{V} \\
& \bar{V}_{L}=\bar{I}_{T} \bar{X}_{L}=\left(4.946 \angle 8.53^{\circ}\right)\left(7 \angle 90^{\circ}\right)=34.622 \angle 98.53^{\circ} \mathrm{V} \\
& \bar{V}_{C}=\Psi_{T} \bar{X}_{G}=\left(4.946 \angle 8.53^{\circ}\right)\left(10 \angle-90^{\circ}\right)=49.46 \angle-81.97^{\circ} \mathrm{V}
\end{aligned}
$$

b) find the voltage across the series combination of X_{L} and X_{C} using the voltage divider rule.

$$
\nabla_{z}=E\left[\frac{\bar{Z}_{L c}}{\bar{R}+\bar{X}_{L}+\bar{X}_{c}}\right]
$$

$$
\begin{aligned}
& \bar{Z}_{L 0}=7 y-10 y=-3 j=3 \angle-90^{\circ} \\
& R+y x_{L}-x_{C}=20+f 7-y 10 \\
& R+y X_{L}-y X_{C}=20.22 \angle-8.50^{\circ} \Omega
\end{aligned}
$$

Example 2-1 Solution (3)

$$
\begin{aligned}
& \bar{V}_{z}=10010^{\circ}\left[\frac{3 \angle-90^{\circ}}{20.22\left(-8.53^{\circ}\right.}\right] \\
& \bar{V}_{2}=100 \angle 0^{\circ}\left(0.14836 \angle-81.47^{\circ}\right) \\
& \bar{V}_{z}=14.836 \angle-81.47^{\circ} \quad \text { Answer }
\end{aligned}
$$

Parallel Ac Circuits

Admittance defined as:

$$
\begin{gathered}
\overline{\mathrm{Y}}=\frac{1}{\overline{\mathrm{Z}}} \\
\overline{\mathrm{Y}}=\frac{1}{\overline{\mathrm{Z}}}=\mathrm{G}+\mathrm{j} \cdot \mathrm{~B}
\end{gathered}
$$

For single elements in parallel

$$
\begin{aligned}
& \frac{1}{\overline{Z_{T}}}=\frac{1}{R}+\frac{1}{j \cdot X_{L}}+\frac{1}{-j \cdot X_{C}} \\
& \bar{Y}_{T}=\frac{1}{R}+\frac{1}{j \cdot X_{L}}+\frac{1}{-j \cdot X_{C}}
\end{aligned}
$$

Also

$$
\overline{\mathrm{Z}}_{\mathrm{T}}=\frac{1}{\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{j} \cdot \mathrm{X}_{\mathrm{L}}}+\frac{1}{-\mathrm{j} \cdot \mathrm{X}_{\mathrm{C}}}}
$$

Parallel Ac Circuits

From Ohm's Law $\quad \overline{\mathrm{I}}_{\mathrm{T}}=\frac{\overline{\mathrm{E}}}{\overline{\mathrm{Z}}_{\mathrm{T}}}$
Substitute in definition of admittance to get... $\quad \overline{\mathrm{I}}=\overline{\mathrm{E}} \cdot \overline{\mathrm{Y}}_{\mathrm{T}}$

When parallel elements are made up of series-connected components, take the sum of these elements before inverting to get the admittance.

Do this

$$
\overline{\mathrm{Y}}_{\mathrm{T}}=\frac{1}{\mathrm{R}+\mathrm{j} \cdot \mathrm{X}}
$$

Not this

Parallel Ac Circuits

Current Division Holds For Phasor Analysis

In the most general form, Z_{1} through Z_{3} can have series connected elements. If these are converted to admittances....

$$
\overline{\mathrm{Y}}_{\mathrm{T}}=\frac{1}{\overline{\mathrm{Z}}_{1}}+\frac{1}{\overline{\mathrm{Z}}_{2}}+\frac{1}{\overline{\mathrm{Z}}_{3}}=\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}+\overline{\mathrm{Y}}_{3}
$$

Current in any branch can be found by using the general current division formula
$\overline{\mathrm{I}}_{\mathrm{T}}=\overline{\mathrm{E}} \cdot \overline{\mathrm{Y}}_{\mathrm{T}} \quad \overline{\mathrm{I}}_{\mathrm{k}}=\left(\frac{\overline{\mathrm{Y}}_{\mathrm{k}}}{\overline{\mathrm{Y}}_{\mathrm{T}}}\right) \cdot \overline{\mathrm{I}}_{\mathrm{T}}$
Where k is the branch where the current is to be found

Admittances and Current Division

If impedances are used with current division, only two branches must be in parallel. There is not limit to the number of parallel branches with admittance. Using admittances note that the branch where the current is flowing is in the numerator.

Parallel Circuit Example

Example 2-2: Find the total admittance, $\mathrm{Y}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}$ and I_{T} for the circuit above. Also find the current I_{2} using the current divider rule.

Example 2-2 Solution (1)

$$
\begin{aligned}
& \bar{z}_{1}=50+y 25 \Omega \\
& \bar{z}_{2}=25-175 \Omega 2 \\
& z_{2}=120052
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{z_{1}}=\frac{1}{50+125}=\frac{1}{55.9 / 26.56^{\circ}}=0.01789 /-26.52^{\circ} \\
& \frac{1}{\bar{z}_{2}}=\frac{1}{25-g^{25}}=\frac{1}{29.056 / 17766^{\circ}}=0.01265 / 71.6^{\circ} \\
& \frac{1}{\frac{1}{z_{3}}}=\frac{1}{200 \angle 80^{\circ}}=0.005 /-90^{\circ}
\end{aligned}
$$

Example 2-2 Solution (2)

$$
\begin{gathered}
\bar{Y}_{T}=\frac{1}{\bar{Z}_{1}}+\frac{1}{\bar{Z}_{2}}+\frac{1}{\bar{Z}_{z}} \\
\bar{Y}_{T}=0.01889 /-26.50+0.01265 / 7110^{\circ}+0.005 /-90^{0} \\
\bar{Y}_{T}=(0.016-y 0.008)+(0.008+y 0.012)+(0.005)=0.02+0.009 j \\
\bar{Y}_{T}=0.0219 \angle 24.22^{\circ}
\end{gathered}
$$

Example 2-2 Solution (3)

$$
\begin{aligned}
& \left.\bar{Z}_{T}=\frac{1}{\bar{Y}_{T}}=\frac{1}{0.8219 \angle 24.220}=45.16 \angle-29.22^{\circ}\right] \\
& \bar{I}_{T}=\frac{E}{\bar{Z}_{T}}=\bar{E} \bar{Y}_{T}=100 \angle 0^{\circ}\left(0.0219 \angle 29.22^{\circ}\right) \\
& \left.\bar{I}_{T}=2.19 \angle 29.22^{\circ} \mathrm{A}\right]
\end{aligned}
$$

Example 2-2 Solution (4)

$$
\begin{gathered}
\bar{I}_{2}=\frac{\bar{Y}_{2}}{\bar{Y}_{T}}\left(\bar{I}_{+}\right)=\frac{0.01265 \angle 71.56^{\circ}}{0.0219 \angle 24.22^{\circ}}\left(2.19 \angle 24.22^{\circ}\right) \\
\bar{I}_{2}=0.57763 \angle 47.39^{\circ}\left(2.19 \angle 29.22^{\circ}\right) \\
\bar{I}_{2}=1.265 \angle 71.50^{\circ} \mathrm{A} \quad \text { Ans }
\end{gathered}
$$

End Lesson 2: Review of AC circuit Analysis

ET 332b
Ac Motors, Generators and Power Systems

