

Learning Objectives

After this presentation you will be able to:
> Identify circuit impedances, voltages and currents using the double subscript notation.

- Perform calculations on wye connected three-phase sources and loads.
> Perform calculations on delta connected three-phase sources and loads.
> Construct phasor diagrams of three-phase sources and loads.
> Identify the time and phasor plots of a three phase set of voltages and currents.

Double Subscript Notation

Sources and voltage drops are defined by the terminal letter. Voltage drop and polarity defined by order of subscripts

Voltages considered positive if first node subscript is higher potential than second node subscript

Double Subscript Notation

Identify current flow from point b to c

Three-Phase Power Systems

Balanced three-phase voltage sources

Characteristics: Three phasor voltages

 Equal voltage magnitudesPhase shift equally spaced 120 degrees apart
Time equations for balanced three-phase voltage sources

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{an}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cdot \sin \left(2 \pi \cdot \mathrm{f} \cdot \mathrm{t}+0^{\circ}\right) \\
& \mathrm{v}_{\mathrm{bn}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cdot \sin \left(2 \pi \cdot \mathrm{f} \cdot \mathrm{t}-120^{\circ}\right) \\
& \mathrm{v}_{\mathrm{cn}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cdot \sin \left(2 \pi \cdot \mathrm{f} \cdot \mathrm{t}-240^{\circ}\right)
\end{aligned}
$$

Three-Phase Power Systems

Time Plots of Three Phase Voltages

Three-Phase Three-Phase

Time Plots of Three Phase Voltages and Phasors

$$
\phi=0 \cdot \operatorname{deg}
$$

Three-Phase Source Connections

$$
\text { Wye - Connected, three-phase } 3 \phi \text { sources In wye connection: }
$$

Determine the relationship between the magnitude and phase shift of each source voltage and the current and voltage at the terminals of the connection

Wye Connected Sources

Line-to-line voltage phasors

$$
\begin{aligned}
& \overline{\mathrm{V}}_{\mathrm{ab}}=\overline{\mathrm{V}}_{\mathrm{an}}-\overline{\mathrm{V}}_{\mathrm{bn}} \\
& \overline{\mathrm{~V}}_{\mathrm{bc}}=\overline{\mathrm{V}}_{\mathrm{bn}}-\overline{\mathrm{V}}_{\mathrm{cn}} \\
& \overline{\mathrm{~V}}_{\mathrm{ca}}=\overline{\mathrm{V}}_{\mathrm{cn}}-\overline{\mathrm{V}}_{\mathrm{an}}
\end{aligned}
$$

In balanced systems $\left|\overline{\mathrm{V}}_{\mathrm{an}}\right|=\left|\overline{\mathrm{V}}_{\mathrm{bn}}\right|=\left|\overline{\mathrm{V}}_{\mathrm{cn}}\right|$

Wye Connected Sources

Wye connected line voltage magnitudes
30°
-90°

$$
\begin{aligned}
& \left|\overline{\mathrm{V}}_{\mathrm{ab}}\right|=\sqrt{3} \cdot\left|\overline{\mathrm{~V}}_{\mathrm{an}}\right| \\
& \left|\overline{\mathrm{V}}_{\mathrm{bc}}\right|=\sqrt{3} \cdot\left|\overline{\mathrm{~V}}_{\mathrm{bn}}\right| \\
& \left|\overline{\mathrm{V}}_{\mathrm{ca}}\right|=\sqrt{3} \cdot\left|\overline{\mathrm{~V}}_{\mathrm{cn}}\right|
\end{aligned}
$$

Phase shifts

Line-to-line (line) voltages lead phase voltages by 30 degrees for CCW rotation

Rotation

$$
\overline{\mathrm{V}}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{ab}} \angle 30^{\circ} \quad \overline{\mathrm{V}}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{bc}} \angle-90^{\circ} \quad \overline{\mathrm{V}}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{ca}} \angle-210^{\circ}
$$

Wye Connect Systems

Example 4-I: a) Find the line-to-line voltage phasors for the wye connected source. b) Find the line current phasors in each of the three phases of the resistive load. c) Find the current flowing in the neutral . $\mathrm{V}_{\mathrm{an}}=100 \angle 0^{\circ} \mathrm{V}_{\mathrm{bn}}=100 \angle-120^{\circ} \quad \mathrm{V}_{\mathrm{cn}}=100 \angle-240^{\circ}$

Example 4-1 Solution (1)

Balanced 3ϕ systems can analyzed using a single phase to neutral and the other quantities determined by the appropriate phase shifts.
a)

$$
\text { a) } \begin{array}{ll}
\bar{V}_{a n}=100 \angle 0^{\prime} & V_{a b}=\sqrt{3} V_{a n} \\
\bar{V}_{b n}=100 \angle-120^{\circ} & V_{a b}=\sqrt{3}(100 \mathrm{~V})=173.2 \mathrm{~V} \\
\bar{V}_{c_{n}}=100 \angle-240^{\circ} & \left|\bar{V}_{a b}\right|=\left|\bar{V}_{b c}\right|=\left|\bar{V}_{c a}\right|=173.2 \mathrm{~V}
\end{array}
$$

For this sequence of phasors, line-to-line voltages lead phase voltages by 30 degrees

$$
\begin{aligned}
& \bar{V}_{a b}=173.2 \angle 30^{\circ} \\
& \bar{V}_{b c}=173.2 \angle-90^{\circ} \\
& \bar{V}_{c a}=173.2 \angle-210^{\circ}
\end{aligned}
$$

Example 4-1 Solution (2)

b)

In wye connection line current equals phase current

$$
\begin{aligned}
& \text { For"a" phase } \\
& \bar{I}_{a}=\frac{\bar{V}_{a n}}{R_{a}}=\frac{100 \angle 0^{\circ}}{35 \angle \sigma^{\circ}}=2.857 \angle 0^{\circ} \mathrm{A}
\end{aligned}
$$

For other phases

$$
\begin{aligned}
& I_{6}=\frac{140 \angle-120^{\circ} v}{35 \angle 0^{\circ} \Omega}=2.857 \angle-120^{\circ} \mathrm{A} \\
& I_{2}=\frac{100 \angle-240^{\circ}}{35 \angle 0^{\circ} \Omega}=2.857 \angle 240^{\circ} \mathrm{A}
\end{aligned}
$$

Example 4-1 Solution (3)

c) To find the neutral current, sum the currents at the load neutral point

Convert to rectangular form to add
$\xrightarrow{I_{b} \longrightarrow}\left\{\begin{array}{l}\bar{I}_{n}=(2.852+y 0)+(-1.4285-y 2.474)+(-1.4285+y .474) \mathrm{A} \\ \bar{I}_{n}=0\end{array}\right.$
In balanced 3ϕ system, neutral conductor carries no current. It is used for
safety and to handle unbalances

Example 4-1 Solution (4)

Phasor diagram

All line-to-line voltages lead the phase voltages by 30 degrees. For resistive load, the phase current is in phase with V_{p}, the phase-to-neutral voltage.

[^0]
Delta Connected Sources

Delta Connected Sources

Current relationships between line and phase
For node B
$\overline{\mathrm{I}}_{\mathrm{bc}}-\overline{\mathrm{I}}_{\mathrm{ab}}-\overline{\mathrm{I}}_{\mathrm{b}}=0$
$\overline{\mathrm{I}}_{\mathrm{bc}}-\overline{\mathrm{I}}_{\mathrm{ab}}=\overline{\mathrm{I}}_{\mathrm{b}}$
For node A
$\overline{\mathbf{I}}_{\mathrm{ab}}-\overline{\mathbf{I}}_{\mathrm{ca}}-\overline{\mathbf{I}}_{\mathrm{a}}=\mathbf{0}$
$\overline{\mathbf{I}}_{\mathrm{ab}}-\overline{\mathbf{I}}_{\mathrm{ca}}=\overline{\mathbf{I}}_{\mathrm{a}}$
For node C

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{ca}}-\overline{\mathrm{I}}_{\mathrm{bc}}-\overline{\mathrm{I}}_{\mathrm{c}}=0 \\
& \overline{\mathrm{I}}_{\mathrm{ca}}-\overline{\mathrm{I}}_{\mathrm{bc}}=\overline{\mathrm{I}}_{\mathrm{c}}
\end{aligned}
$$

${ }^{\mathrm{I}}{ }_{c}$
Phasor subtraction gives the current magnitude

Where:
$\mathrm{I}_{\mathrm{L}}=$ line current $I_{p}=$ phase current

Delta Connected Sources

Phasor diagram of delta currents

Phase rotation is $A B C$ in this case

Delta Connection Example

Example 4-2: For the delta connected load shown, a) find the phasor values of phase and line currents for the circuit.: b) draw a phasor diagram of the computed currents and given voltages $\mathrm{R}=15$ ohms in each phase.

Example 4-2 Solution (1)

For this balanced system, compute the values for single phase and then shift the angles for the other values

$$
I_{a b}=\frac{\bar{V}_{a b}}{B}=\frac{240 \angle 0^{\circ}}{15 \angle 0^{\circ}}=16 \angle 0^{\circ} \mathrm{A}
$$

Now compute the line current

$$
\begin{aligned}
& \bar{I}_{a}=\sqrt{3} I_{a b} \angle-30^{\circ} \\
& \bar{I}_{a}=\sqrt{3}(16) \angle 0^{\circ}-30^{\circ} \\
& \bar{I}_{a}=27.72 \angle-30^{\circ} \mathrm{A}
\end{aligned}
$$

$$
\bar{I}_{b c} \text { and } I_{c a}-120^{\circ} \text { and }-290^{\circ} \text { from }
$$

$$
\bar{I}_{a b} \text { so }
$$

$$
\bar{I}_{b c}=16 l-120^{\circ} \quad \bar{I}_{C a}=16 \angle-240^{\circ}
$$

Example 4-2 Solution (2)

Similarly for the line current

$$
\begin{aligned}
& \bar{I}_{b}=27.72 \angle-150^{\circ} \mathrm{A} \\
& \bar{I}_{c}=27.72 \angle-270^{\circ} \mathrm{A}
\end{aligned}
$$

Phasor diagram for delta connected load Example 4-2

Resistive circuit, so phase currents are in phase with voltages that produce it.

Line currents lags the phase currents by the 30 degrees

Delta Connected Load-General Impedances

Example 4-3: a) Find the phasor values of phase and line currents for the circuit shown: b) draw a phasor diagram of the computed currents and given voltages. $Z=30 \angle-39^{\circ}$ ohms.

Example 4-3 Solution (1)

Phase current of V_{ab}

$$
\begin{aligned}
& I_{a b}=\frac{\bar{V}_{a b}}{\bar{Z}}=\frac{248 \angle 0^{\circ}}{30 \angle-39^{\circ}} \\
& \bar{I}_{a b}=8 \angle 39^{\circ}
\end{aligned}
$$

Line current $\quad I_{\varepsilon a}=\sqrt{3} I_{a b} \angle-30^{\circ}+\theta \quad \bar{I}=13,85 \angle+9^{\circ}$

Other phases	$\bar{I}_{\bar{C}_{c}}=8 /-8 i^{\circ} \mathrm{A}$	$I_{C a}=8 L-201^{\circ} \mathrm{A}$
	$I_{b}=\sqrt{3} I_{b c} \angle-30^{\circ}+\theta$	$\bar{I}_{c}=\sqrt{3} I_{C G} 1-\frac{10507 \theta}{}$
	$\bar{I}=13.85 /-30-81^{\circ}$	$\bar{I}_{G}=13.85\left(-30.201^{\circ} \mathrm{A}\right.$
	$\bar{I}_{6}^{6}=13.85 \angle-111^{\circ}$	$\bar{I}_{6}=13.85\left(-231^{\circ} \mathrm{A}\right.$

Example 4-3 Solution (2)

Example 4-3 phasor diagram

End Lesson 4: Three Phase Sources and Loads
 ET 332a Ac Motors, Generators and Power Systems

[^0]: >15

