Lesson 7: Power and Energy Measurement
 ET 332b Ac Motors, Generators and Power Systems

After this presentation you will be able to:
Determine the phase sequence of a 3-phase voltage source

- Explain the difference between single and 3-phase ac power flow in time
- Connect power meters to read active power and reactive power
- Explain how energy meters operate
- Read and compute energy consumption

Learning Objectives

Phase Sequence - order of voltages in a 3-phase system. Determine the direction of rotation in motors and the direction of flow in power and energy measurement

Positive sequence: Phase voltages and currents have $A B C$ order

Negative sequence: Phase voltages and currents have BAC order
 Phase Sequence in 3-Phase Systems

Phase sequence of interconnected power systems must match. Identify phase lead of each system using voltmeter

V-meter measures no potential difference if a1 is in phase with a2

Phase Sequence Identification

Cross-phased system

V difference between leads $c 1$ and b2 short circuits phases C \& B

V difference between leads b1 and c2 short circuits phases C \& B

Phase Sequence Identification

Procedure For Interconnecting Systems

System Must Have:

1) Same frequency
2) Same voltage
3) Same phase sequence $A B C$ or $B A C$

Is $\mathrm{V} \neq 0$ move T to another lead

Is $\mathrm{V}=0$? If so connect ?? to a1

Example 7-1: determine the correct connections to tie the two systems together

1) a1-??: $V=0$ connect leads
2) c1-??: V=0 connect leads
3) $c 1-? ? ~ V \neq 0$ move T lead

Simple indicator uses unbalanced Y-connection with no ground

Phase sequence determined
Sy voltage measurements
V-high (A),
across phase to neutral

V-low (B),
Capacitor (C)

Balanced 3-phase V's produce balanced I's

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{a}}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) & \mathrm{I}_{\mathrm{a}}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t}-\theta) \\
\mathrm{V}_{\mathrm{b}}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-120^{\circ}\right) & \mathrm{I}_{\mathrm{b}}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-120^{\circ}-\theta\right) \\
\mathrm{V}_{\mathrm{c}}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+120^{\circ}\right) & \mathrm{I}_{\mathrm{c}}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+120^{\circ}-\theta\right)
\end{array}
$$

$\theta=$ power factor angle

Single phase power

$$
P_{I_{l}}(t)=V_{a}(t) \cdot I_{a}(t)
$$

3-phase power $P_{3 \phi}(t)=V_{a}(t) \cdot I_{a}(t)+V_{b}(t) \cdot I_{b}(t)+V_{c}(t) \cdot I_{c}(t)$

Time Functions of AC power

Power time plots comparing single and 3-phase power

Note: Three phase power does not change in time. Single phase power instantaneously zero.
Trime Functions of AC power

Active power measurement requires measurement of both I and V
$\mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\theta)$

Metering connections

Dotted ends of coils indicate instantaneously positive potentials and currents
Meters can be connected to measure positive for load entering or leaving the load. Convention: I entering dot gives positive P. Indicates load absorbs P. I leaving dot- negative P, load delivers P

Blondel's Theorem - Number of meters required to measure total power in balanced three-phase system is given by number meters $=$ number wires -1

Meters can be integrated into single unit that displays total power. Each integral meter is called an element

Three-phase Power Metering

Meter M1 measures E_{ab} and I_{a} Meter M2 measures E_{cb} and I_{c}

$$
\mathrm{P}_{\mathrm{M} 1}=\mathrm{V}_{\mathrm{ab}} \cdot \mathrm{I}_{\mathrm{a}} \cdot \cos \left(30^{\circ}+\theta\right) \quad \mathrm{P}_{\mathrm{M} 2}=\mathrm{V}_{\mathrm{cb}} \cdot \mathrm{I}_{\mathrm{c}} \cdot \cos \left(30^{\circ}-\theta\right)
$$

Three-wire Connections

Derivation

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{M} 1}+\mathrm{P}_{\mathrm{M} 2}=\mathrm{E}_{\mathrm{ab}} \mathrm{I}_{\mathrm{a}} \cos \left(30^{\circ}+\theta\right)+\mathrm{E}_{\mathrm{cb}} \mathrm{I}_{\mathrm{c}} \cos \left(30^{\circ}-\theta\right)
$$

Since $I_{a}=I_{c}=I_{L}$ and $E_{a b}=E_{c b}=E_{L L}$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{M} 1}+\mathrm{P}_{\mathrm{M} 2}=\mathrm{E}_{\mathrm{LL}} \mathrm{I}_{\mathrm{L}}\left(\cos \left(30^{\circ}+\theta\right)+\cos \left(30^{\circ}-\theta\right)\right)
$$

Simplify using trigonometric identities

$$
\begin{gathered}
\left(\cos \left(30^{\circ}+\theta\right)+\cos \left(30^{\circ}-\theta\right)\right)=\sqrt{3} \cos (\theta) \\
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{M} 1}+\mathrm{P}_{\mathrm{M} 2}=\sqrt{3} \mathrm{E}_{\mathrm{LL}} \mathrm{I}_{\mathrm{L}} \cos (\theta)
\end{gathered}
$$

Two meters read total power

2-Wattmeter Power Measurement

Reading of meter M1 changes as load F_{p} changes

$$
\theta=60^{\circ} \text { then } 30^{\circ}+\theta=90^{\circ} \text { so } \cos \left(90^{\circ}\right)=0 \text { and } \mathrm{P}_{\mathrm{M} 1}=0
$$

$$
F_{p}=\cos \left(60^{\circ}\right)=0.5
$$

M1 reads negative for $F_{p}<0.5$ M1 reads positive for $F_{p}>0.5$ M1 reads zero for $F_{p}=0.5$

2-Wattmeter Power Measurement

Example 7-3: A balanced 3-phase 3-wire load is measured using the 2-wattmeter method. The line current for the load is 125 A and the system voltage is 575 volts. The load has a power factor of $45 \%(0.45)$ lagging. Find the total load power and the readings for each meter.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p}}=\cos (\theta)=0.45 \\
& \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{E}_{\mathrm{LL}} \mathrm{I}_{\mathrm{L}} \cos (\theta)=\sqrt{3}(575)(125)(0.45)=56,021 \mathrm{~W}
\end{aligned}
$$

Compute the reading on meter 1 and meter 2 using the equations for meter's 1 and 2

2-Wattmeter Example

Using the formulas for M1 and M2 we get these values

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\mathrm{~F}_{\mathrm{p}}\right)=\cos ^{-1}(0.45)=63.2^{\circ} \\
& \mathrm{P}_{\mathrm{M} 1}=\mathrm{E}_{\mathrm{LL}} \mathrm{I}_{\mathrm{L}} \cos (30+\theta)=(575)(125) \cos (30+63.2) \\
& \mathrm{P}_{\mathrm{M} 1}=71875 \cdot \cos (93.2)=-4012 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{M} 2}=71875 \cos (30-\theta)=71875 \cos (-33.2) \\
& \mathrm{P}_{\mathrm{M} 2}=60142 \mathrm{~W}
\end{aligned}
$$

Check total value: $\mathrm{P}_{\mathrm{T}}=60142-4012=56130 \mathrm{~W}$
Finding F_{p} from M1 and M2 readings $\quad \tan (\theta)=\sqrt{3} \cdot \frac{\mathrm{P}_{\mathrm{M} 2}-\mathrm{P}_{\mathrm{M} 1}}{\mathrm{P}_{\mathrm{M} 2}+\mathrm{P}_{\mathrm{M} 1}} \quad \mathrm{~F}_{\mathrm{p}}=\cos (\theta)$

Example 7-3 Solution (1)

Three-Phase, 4-wire Metering

 connections
VAR and kVAR Metering

All P and Q meters measure the current components that are in phase with the load voltage.

For single phase measurements

CCW phase rotation

Reactive Power Metering

Sign convention of reactive power

CCW phase rotation

Lagging current produces a negative VAR reading

$$
\mathrm{Q}_{\mathrm{T}}=-\mathrm{EI}_{\mathrm{L}} \sin (\theta)
$$

For leading current:

$$
\mathrm{Q}_{\mathrm{T}}=\mathrm{EI}_{\mathrm{L}} \cos (90-\theta)=\mathrm{EI}_{\mathrm{L}} \sin (\theta)
$$

Leading current produces a positive VAR reading with this phase rotation

Reactive Power Metering

VAR Measurement By Cross-Phasing Voltage

$E_{b c}=-E_{c b}$

Meter measures current in phase "a" and the line- to-line voltage $\mathrm{E}_{\mathrm{bc} \text {. }}$ This gives the following relationship

$$
\mathrm{Q}_{\mathrm{T}}= \pm \sqrt{3} \mathrm{E}_{\mathrm{bc}} \mathrm{I}_{\mathrm{a}} \sin (\theta)=\sqrt{3} \mathrm{E}_{\mathrm{LL}} \mathrm{I}_{\mathrm{L}} \sin (\theta)
$$

Reactive Power Measurement

Measuring VARs from the two-watt meter method

$$
P_{2}-P_{1}=E \cdot I \cdot \sin (\theta)=Q
$$

To get total VARs, multiply both sides by square root of 3 .

$$
\begin{aligned}
& \sqrt{3} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)=\sqrt{3} \cdot \mathrm{E}_{\mathrm{LL}} \cdot \mathrm{I}_{\mathrm{L}} \cdot \sin (\theta)=\mathrm{Q}_{\mathrm{T}} \\
& \mathrm{Q}_{\mathrm{T}}=\sqrt{3} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)
\end{aligned}
$$

P_{2} reading of meter between phases b and c

Reactive Power Measurement

Example 7-4: The two-wattmeter connection shown below measures the power input to a load. The reading of wattmeter M1 is 5000 W and wattmeter M 2 is $12,000 \mathrm{~W}$. From these readings find: a.) Total active power absorbed, b.) total reactive power absorbed, c.) F_{p} of the load.
a) Total active power
$P_{1}=P_{m 1}+P_{m 2}$
$P_{m i}=5000 \mathrm{~W}$
$P_{m 2}=12,000 \mathrm{~W} P_{T}=5,000+12,000 \quad P_{T}=17,000 \mathrm{~W}$ Ans

Reactive Power Measurement

Two-Wattmeter Method
b) Reactive power
$Q_{r}=\sqrt{3}\left(P_{m 2}-P_{m 1}\right)$
$Q_{T}=\sqrt{3}(12,000-5,000)$
$Q_{T}=\sqrt{3}(7000)$
$Q_{r}=12,124 \cup A R$ Ans
c) Find power factor

$$
F_{P}=\frac{P_{T}}{S_{T}} S_{T}=\sqrt{P_{T}^{2}+Q_{T}^{2}}
$$

$$
S_{T}=\sqrt{17,000^{2}+(12,124)^{2}}
$$

$$
S_{T}=20,881 \mathrm{VA}
$$

$$
F_{p}=\frac{17,000 \mathrm{w}}{20,881 \mathrm{vA}}
$$

$$
F_{p}=0.814 \mathrm{Lag} \text { Ans }
$$

Example 7-4 Solution (1)

Instrument transformers reduce voltage and current to measurable range.

Potential Transformers (PT)

Reduce voltage from high potential to $110-120 \mathrm{~V}$ range Typical ratios 6900/115 $=60 / 1$ PTR

Current Transformer (CT)

Reduce high currents to 1-10A range meters rated 5 A nominal 10 A overload. Typical ratio 600/5 $=120 / 1$ CTR

Scaling factor for high power metering
Power ratio $=(C T R)($ PTR $)$ for above case Power ratio $=(120)(60)=7200$

High Voltage and High Current power Measurements

ENERGY = (instantaneous power) \times (time)

$$
\begin{aligned}
W=p \times t \quad \text { where } \quad & \text { W = energy } \\
& p=\text { instantaneous power } \\
& t=\text { time }
\end{aligned}
$$

Electromechanical kWh meters sum power over time interval using a rotating disk.

Number of revolutions, n, proportional to energy
so $\quad n=C_{p} \times P \times t$
$C_{p}=$ meter energy constant (units kWh/rev)
kWh meter measures the electric energy we all consume in our homes and businesses

Electromechanical Energy Meter Construction

1) Start from left-most Dial $(10,000)$
2) Record value just past by pointer
3) Record value of each dial
4) Subtract last reading from present meter reading
5) Difference is the usage in kWh for period

How to Read an

Electromechanical Energy Meter

Example 7-5

Compute the usage for the last 30 days if the last meter reading was 7129 and the current meter reading is shown above

Note rotation directionof the meter dials and read the last integer that the pointer has past.

| Reading | 8 | 3 | 8 | 8 |
| :--- | :--- | :--- | :--- | :--- |\quad Energy usage is the difference between the two readings

$8388-7129=1259 \mathrm{kWh}$

Reading an Energy Meter

1) Read initial digital value at start of period
2) Record value
3) Read final digital value at end of period
4) Subtract last reading from present meter reading
5) Difference is the usage in kWh for period

Reading an Electronic Energy Meter

Large electric customers billed on energy and average power (demand)

Units for electric energy - kWh =kilowatt-hours

Time period
Average Power = Demand
 record demand on intervals of 15 min 30 min and 1 hour intervals automatically

Where: $\mathrm{E}_{\mathrm{e}}=$ electric consumption
$\mathrm{T}=$ time period in hours

Electric Load Characteristics

Measuring instantaneous demand with electromechanical kWh meters

Instantaneous Demand $=\mathrm{D}_{\mathrm{i}}$

$$
\mathrm{D}_{\mathrm{i}}=\frac{3.6 \times \mathrm{K}_{\mathrm{r}} \times \mathrm{K}_{\mathrm{h}}}{\mathrm{~T}} \mathrm{~kW}
$$

For Instrument transformer sites

$$
\mathrm{D}_{\mathrm{i}}=\frac{3.6 \times \mathrm{K}_{\mathrm{r}} \times \mathrm{K}_{\mathrm{h}} \times(\mathrm{PTR}) \times(\mathrm{CTR})}{\mathrm{T}} \mathrm{~kW}
$$

Where:
$\mathrm{K}_{\mathrm{h}}=$ Watthour meter constant $(\mathrm{Wh} / \mathrm{rev}$ located on meter face)
$\mathrm{K}_{\mathrm{r}}=$ Number of revolutions / period
$\mathrm{T}=$ Total time (seconds)

An electromechanical watt-hour meter makes 10 revolutions in 15 seconds. ($k_{h}=7.2$) Find the demand.

$$
\begin{gathered}
D_{i}=\frac{3.6 \times K_{r} \times K_{h}}{T} \mathrm{~kW} \\
D_{i}=\frac{3.6 \times(10 \mathrm{rev}) \times(7.2 \mathrm{kWh} / \mathrm{rev})}{15 \mathrm{sec}} \mathrm{~kW}
\end{gathered}
$$

$D_{\mathrm{i}}=17.28 \mathrm{~kW}$

As T decrease, D_{i} approaches the actual instantaneous power value. Increasing T and number of revolutions produces an average value of power demand over the time interval.

Electric Demand Calculation Example 7-7

End Lesson 7: Power and Energy Measurement
 ET 332b Ac Motors, Generators and Power Systems

