ECE 428 Programmable ASIC Design

FPGA Logic Cells and Architecture

Haibo Wang ECE Department Southern Illinois University Carbondale, IL 62901

Overview

- □ An FPGA contains a large number of logic cells. Each logic cell can be configured to implement a certain set of functions.
- □ Each logic cell has a fixed number of inputs and outputs.
- □ Logic cells used in FPGAs
 - Multiplexer based logic cells (e.g. Actel FPGAs)
 - Memory based logic cells (e.g. Xilinx FPGAs)

Multiplexer Based Logic Cells

A multiplexer-based logic module is typically composed of a tree of 2-to-1 MUXes

Actel ACT Logic Module

Multiplexer Logic as Function Generators

Shannon's Expansion Theorem

 $F(a) = a \bullet F(a=1) + a' \bullet F(a=0)$

- F(a=1) represents the function evaluated with a=1
- F(a=0) represents the function evaluated with a=0

> example

$$F(a) = (b \bullet (a+c) + d \bullet a')'$$

= $a \bullet b + a' \bullet (b \bullet c+d)'$

Implement F(a) using multiplexers

Actel ACT2 and ACT3 Logic Modules

Flip-flop can be incorporated into a multiplexer-based logic module to implement sequential logic.

- A memory based logic cell is also called look-up table (LUT) based logic cell (memory is the LUT).
- Any function of up to K variables can be implemented by a k-input LUT (memory).
- D flip-flops can be included in LUT based logic cells to implement sequential circuits.

LUT-Based Logic Cell

Function Implementation using LUT

D Implement Function $Y = a \cdot b + b \cdot c'$

a	b	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Truth Table

Xilinx XC3000 Configurable Logic Block

Altera FLEX Logic Element

How to Build a LUT

Source: Altera white paper: FPGA Architecture

Determining the Optimal Size of LUT

- Small size LUT increases the level of logic implementation and, hence, increases circuit delay.
- □ Large size LUT increases silicon area and cost since some of their inputs are not used in logic implementation.

Example: Xilinx Virtex II

Source: Xilinx Basic FPGA Architecture

Adding Analog Flavor to Programmable Devices

- Some latest FPGA devices also contain programmable analog components to provide single-chip solutions for mixed-signal applications:
- □ Example: Actel SmartFusion

Source: www.actel.com