
8-1

ECE 428 Programmable ASIC Design

Haibo Wang
ECE Department

Southern Illinois University
Carbondale, IL 62901

FPGA Implementation of
Sequential Logic

8-2

Sequential Circuit Model

Storage elements

Combinational
Circuits

clock

Circuit
inputs

Circuit
outputs

Combinational Circuit: the circuit outputs are a logic combination
of the current inputs signals.

Sequential Circuit: the circuit outputs depend on not only the
current values of inputs but also previous input values.

A model for sequential circuits

8-3

Storage Elements in Xilinx CLB

Each CLB contains two edge-triggered D flip-flops. They can be configured as
positive-edge-triggered or negative-edge-triggered.
Each D flip-flop has clock enable signal E, which is active high.
Each D flip-flop can be set or reset by SR signal. A global reset or reset signal
is also available for set or reset all D flip-flops once the device is powered up.

8-4

Circuit Techniques to Avoid Clock Glitches

If possible, try to avoid connecting the output of combinational logic
to D flip-flop clock input.

D Q
Enable E

Clock

Clock

Enable
Output

8-5

FPGA Implementation of Finite State Machines

S3

S0

S1 S2xx

10

10

11

0x

0x

11

xx

Example of Finite State Machine

State transition diagram

Current
States

Inputs: xy Outputs

a b c d e

S0 S3 S1 S2 0 0 1 1 1

S1 S2 S2 S2 0 1 0 1 1

S2 S3 S1 S2 1 0 0 1 0

S3 S3 S3 S3 0 0 0 0 0

0x 10 11

State Table

Note: this is a Moore-type machine. The design
procedure for mealy-type machine is
similar.

8-6

State Encoding

Binary encoding: minimum number of D flip-flops

One-hot encoding: one D flip-flop for each state

S0 : 0 0
S1 : 0 1
S2 : 1 0
S3 : 1 1

S0 : 0 0 0 1
S1 : 0 0 1 0
S2 : 0 1 0 0
S3 : 1 0 0 0

It needs two D flip-flps

It needs four D flip-flps

Q1Q0

Q0Q1Q2Q3

8-7

Implementation Using Binary Encoding
Excitation table

Inputs Current States Next States Outputs
x y Q1 Q0 D1 D0 a b c d e

0 x 0 0 1 1 0 0 1 1 1
0 x 0 1 1 0 0 1 0 1 1
0 x 1 0 1 1 1 0 0 1 0
0 x 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0 1 1 1
1 0 0 1 1 0 0 1 0 1 1
1 0 1 0 0 1 1 0 0 1 0
1 0 1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 1 1 1
1 1 0 1 1 0 0 1 0 1 1
1 1 1 0 1 0 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0

8-8

Implementation Using Binary Encoding
Combinational functions needed to be implemented

D1 = x’+ y + Q0 (F1)

D0 = Q1•Q0 + y’•Q0’ + x’•Q0’ (F2)

a = Q1•Q0’ (F3)

b = Q1’•Q0 (F4)

c = Q1’•Q0’ (F5)

d = Q0’ + Q1’ (F6)

e = Q1’ (F7)

8-9

Implementation Using Binary Encoding
FPGA implementation

x
y
1

LUT

F1

LUT

F2

QD

QD
x
y

Q0

Q1

CLB
CLB

CLB

Reset

Clk

a

b

c

d

e
F3, F4

F5, F6

It needs three CLBs

8-10

Implementation Using One-Hot Encoding
The next state and output functions have a simple, systematic form

∑ +•••++=)(,2,1, njjjji IIIQD
— Di is the input of the D flip-flop that represents state Si
— Qj is the output of the D flip-flop that represent state Sj
— Ij,1, Ij,2, ….. and Ij,n denote all input combinations that cause

a state transition from Sj to Si

Next state function

Output function

mkkkk QQQz ,2,1, +•••++=
— zi is an FSM output
— Qk,1, Qk,2, ….. and Qk,m denote all states (D flip-flip outputs)

that cause output zk to be 1

8-11

Implementation Using One-Hot Encoding
Combinational functions needed to be implemented

D0 = 0 (F1)

D1 = Q0•x•y’ + Q2•x•y’ (F2)

D2 = Q0•x•y + Q1 + Q2•x •y (F3)

D3 = Q0•x’ + Q2 •x’ + Q3 (F4)

a = Q2

b = Q1

c = Q0

d = Q0+Q1+Q2 (F5)

e = Q0+Q1 (F6)

8-12

Implementation Using One-Hot Encoding
FPGA implementation

D Q

D Q

0

LUT

F2

Q0
x
y

Q2

D Q

D QLUT

F4

F3
LUT

LUT

Q0

Q0

y

Q2

x

x

Q1
Q2

Q3

Reset

Clock

CLB

CLB

Q0

Q1

Q2

Q3

CLB

F5, F6

a

b

c

d

e

It needs three CLBs

8-13

Selecting FSM Coding in Xilinx ISE

8-14

Comparison of Binary Encoding and One-Hot Encoding

Binary encoding
— Fewer flip-flops
— It normally needs complicated combinational logic to determine

next state and output signals. The complicated logic may decrease
circuit performance.

— May have glitches

One-hot encoding

FPGAs have plenty of flip-flops. Thus, it is preferred to use
one-hot encoding in FPGA FSM implementations.

— More flip-flops
— It normally has simple combinational logic for next state transitions

and output signals. It is suitable for high performance system design.
— It is unlikely to have glitches.

8-15

Possible Glitches in Binary-Encoded FSMs

01 10

11

Desired transition 10 10

Actual transition 01 11 10

D Q D Q

delayCLK

Q1 Q0

O
Glitch

If “11” is a legal state and certain
operations are associated with state
“11”, the glitch may cause unwanted
circuit operation
In one-hot encoding, “11” is not a
legal state and, hence, it will not
trigger unwanted circuit operations.

8-16

Possible Lock-up States in Binary-Encoded FSMs
When unused states exist in a binary-encoded FSM, make sure
there are no lock-up states.
— Example: for a three state FSM, it needs two D flip-flops to implement

binary encoding scheme. Assume 01, 10, 11 are the three used states.
00 is the unused state, make sure that FSM will not be trapped in 00 state.

01 10

11 00

Used states Unused state

Lock-up
state

01 10

11 00

Used states Unused state

Not a
lock-up
state

To avoid lock-up states, make sure the FSM will eventually move from any
unused state to an used state. Another method is to use reset (or set) signals
to reset (or set) FSM to an used state (initial state) after power-up.

8-17

Implement Complex FSM using embedded Memories

Latest FPGAs often contain embedded memories. Complicated
FSMs can be implemented by using the embedded memories.

Current state FSM outputs

FSM
inputs

FSM outputs

Previous
states

Previous
inputs

decoder

memory

DFF

clock

It is similar to the microprogram mechanism used in CISC computers.

• •
 •

• •
 •

8-18

Example: memory-based FSM implementation

Example FSM on slide 8-5
Use the state encoding shown on slide 8-7
Circuit hardware (for clocked memory, the DFFs are not needed)

Q1 Q0 a b c d e

FSM
inputs

FSM outputs

decoder

memory

DFF

clock

x
y Mem. Size: 16 x 7

• •
 •

• •
 •

A3
A2
A1
A0

d6 d5 d4 d3 d2 d1 d0

8-19

Example: memory-based FSM implementation

Date stored in memory (note the difference from the table on slide 8-7)

Address Memory Content
A3(x) A2(y) A1(Q1) A0(Q0) d6(Q1) d5(Q0) d4(a) d3(b) d2(c) d1(d) d0(e)

0 x 0 0 1 1 0 0 0 0 0
0 x 0 1 1 0 1 0 0 1 0
0 x 1 0 1 1 0 0 0 0 0
0 x 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 0
1 0 1 0 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0
1 1 0 1 1 0 1 0 0 1 0
1 1 1 0 1 0 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0

