
1

Ecomap: Sustainability-Driven Optimization of
Multi-Tenant DNN Execution on Edge Servers

Varatheepan Paramanayakam1, Andreas Karatzas1, Dimitrios Stamoulis2, Iraklis Anagnostopoulos1
1School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, U.S.A.

2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, U.S.A.
Email: {varatheepan, andreas.karatzas, iraklis.anagno}@siu.edu, dstamoulis@utexas.edu

Abstract—Edge computing systems struggle to efficiently man-
age multiple concurrent deep neural network (DNN) workloads
while meeting strict latency requirements, minimizing power
consumption, and maintaining environmental sustainability. This
paper introduces Ecomap, a sustainability-driven framework that
dynamically adjusts the maximum power threshold of edge devices
based on real-time carbon intensity. Ecomap incorporates the
innovative use of mixed-quality models, allowing it to dynamically
replace computationally heavy DNNs with lighter alternatives
when latency constraints are violated, ensuring service respon-
siveness with minimal accuracy loss. Additionally, it employs a
transformer-based estimator to guide efficient workload mappings.
Experimental results using NVIDIA Jetson AGX Xavier demon-
strate that Ecomap reduces carbon emissions by an average of
30% and achieves a 25% lower carbon delay product (CDP) com-
pared to state-of-the-art methods, while maintaining comparable
or better latency and power efficiency.

Index Terms—Edge computing; Sustainability; Deep Neural
Networks; Carbon intensity

I. INTRODUCTION

In recent years, AI has emerged as a prominent field of
computing, with significant projected growth in both scale
and deployment. This trend has led to the widespread use
of power-hungry hardware accelerators. For instance, Meta’s
infrastructure for AI inference has expanded by 2.5× in just 1.5
years to support trillions of daily inferences [1]. While AI en-
ables transformative applications, this growth introduces critical
sustainability challenges. These include not only operational
carbon emissions (from energy consumed during inference) but
also embodied carbon emissions (from device manufacturing,
deployment, and disposal) [2], water consumption for cooling
AI accelerators [3], and waste heat that further burdens thermal
design and infrastructure. Although operational emissions have
traditionally received more attention, recent studies show that
embodied emissions are becoming increasingly dominant in the
lifecycle footprint of AI systems [4].

This work focuses on reducing operational carbon emissions
from AI inference workloads on edge computing systems. Edge
deployments are becoming widely adopted across sectors such
as healthcare, smart surveillance, and transportation, where on-
device inference is needed to support fast, localized decisions.
These systems operate under tight latency constraints and are
typically powered by regional electricity grids. In this context,
the carbon footprint (CF) of an edge system refers to the total

CO2 (i.e., equivalent emissions produced during inference),
which is affected not just by how much energy the device
consumes, but also by the carbon intensity (CI), a measure
of how clean or polluting the electricity source is [5]. CI varies
significantly depending on location, time of day, and the local
mix of energy sources (e.g., solar vs. coal), making operational
carbon emissions highly dynamic and dependent on when and
where inference occurs.

Edge computing has become essential for real-time appli-
cations by enabling computation closer to the user, thereby
reducing latency and bandwidth costs [6]. Unlike centralized
cloud data centers, edge devices typically handle real-time,
multi-tenant AI workloads that cannot be deferred or batched.
These devices are increasingly expected to execute multiple
DNN-based services concurrently, such as object detection,
tracking, and scene understanding, each with distinct latency
and resource requirements [7]. This simultaneous execution
introduces complex scheduling challenges, including resource
contention, degraded QoS, and increased energy consumption.
Traditional coarse-grain approaches that assign entire DNNs to
a single processor are inadequate in such settings. Instead, mod-
ern systems must support fine-grained layer-level partitioning,
allowing DNNs to be split across CPUs and GPUs to maximize
utilization and reduce contention [8], [9].

The challenge becomes even more complex when incor-
porating sustainability into the scheduling objective. While
reducing energy use is beneficial, it does not always lead to
lower carbon emissions, especially when CI is high [4]. For
instance, reducing the frequency of a GPU to save power may
increase contention and unbalance resource utilization, leading
to degraded performance and higher latency. As the GPU
frequency drops, inference latency increases, leading to longer
queues and contention when several models share the GPU.
Meanwhile, the CPU may remain idle or underused, resulting
in unbalanced resource utilization. These dynamics often invali-
date previously optimal mappings, requiring re-optimization. To
support real-time, sustainable multi-DNN execution under such
non-stationary conditions, there is a clear need for intelligent
runtime managers that can adapt workload placements, system
configurations, and performance constraints on the fly.

A promising technique to support this adaptive runtime
management is the use of mixed-quality models. These are
pre-trained variants of the same model architecture that differ

2

in size, accuracy, and computational cost [10]. For example,
a system may switch from ResNet-50 to ResNet-38 during
periods of high load or carbon constraints, achieving faster in-
ference and lower energy use with minimal accuracy loss [11].
The ability to dynamically substitute model variants provides
a powerful knob to manage two common bottlenecks in edge
AI systems: (1) contention from concurrent DNN execution,
and (2) aggressive power capping under high-CI conditions.
However, current runtime frameworks typically apply such
model switches using static thresholds or simple heuristics.
What is missing is a systematic framework that combines model
quality adaptation with power-aware fine-grain mapping and
real-time carbon optimization.

In this paper, we present Ecomap, a sustainability-driven
framework for managing multi-DNN workloads on heteroge-
neous edge servers under strict latency constraints. Ecomap
balances performance and environmental impact by combin-
ing fine-grained, power-aware layer mapping with dynamic
workload adaptation. It integrates a transformer-based man-
ager to distribute DNN layers across available components
(CPU, GPU) and leverages mixed-quality models to maintain
responsiveness with minimal accuracy loss. The core con-
tributions of Ecomap are threefold: 1 Fine-grained layer
splitting to distribute concurrent DNNs across CPUs and GPUs,
reducing contention and latency; 2 Dynamic power control
through real-time adjustment of frequencies and active CPU
cores, guided by carbon intensity; 3 Use of mixed-quality
models to substitute heavier DNNs under contention or power
constraints, preserving latency and accuracy. This integration
of mixed-quality models, power management, and fine-grained
workload mapping makes Ecomap a comprehensive solution
for sustainable multi-DNN management in edge systems.

II. RELATED WORK

Multi-DNN execution on resource constrained devices:
Several studies have focused on improving inference through-
put on heterogeneous edge platforms. For example, [12] ex-
plores inter-layer parallelism in DNNs, and [13] uses layer
dimensions to guide mapping. However, both ignore power
and sustainability. Recent methods like [14] use energy har-
vesting and renewable prediction for general edge workloads
but do not address DNN-specific mapping. Adapi [15] sup-
ports model adaptivity for private inference but lacks support
for concurrent multi-DNN execution or power control. Other
frameworks target multi-DNN throughput. For instance, [16]
builds a latency model for pipelined execution, and HaX-
CoNN [7] considers contention-aware scheduling. Yet, they
overlook energy efficiency. ODMDEF [17] uses regression
and k-NN for workload pipelines but requires large datasets
and lacks energy optimization. CARTAD [18] and ARM-CO-
UP [19] address thermal or throughput goals but are not
tailored for real-time, carbon-aware multi-DNN workloads.
OmniBoost [8] introduces a neural cost model but does not
consider power. MapFormer [20] improves power awareness
with fine-grained layer splitting but lacks runtime sustainability
controls. Although recent works begin addressing energy and

sustainability, they typically target single-model inference or
general workloads. To our knowledge, no existing method
combines power-aware scheduling, real-time carbon adaptation,
and efficient multi-DNN management as Ecomap does.

Mixed-quality ML models: Mixed-quality models have
been explored extensively for efficient DNN execution. The
method in [21] uses progressive bit-width allocation and joint
training for compression-aware quantization. Similarly, [22]
combines pruning with mixed-precision quantization to reduce
latency and memory usage. AutoMPQ [23] automates this pro-
cess via few-shot quantization adapters that dynamically tune
per-layer precision. Edge-MPQ [24] introduces a hardware-
aware, layer-wise quantization strategy to balance accuracy
and efficiency on edge devices. In contrast, [25] uses diverse-
precision hardware but relies on heuristics unsuitable for typ-
ical embedded systems. From a sustainability point of view,
Clover [11] uses mixed-quality models and GPU partitioning
to reduce emissions in cloud-scale inference, while PULSE [26]
switches between model variants to cut latency and overhead
in serverless settings. However, both target cloud environments
rather than edge devices.

Sustainability-oriented edge computing: Carbon-aware
strategies have been widely studied to improve sustainability
in computing. For cloud systems, [27] proposes a scheduler
balancing emissions, performance, and cost, while [28] explores
scheduling during low-carbon periods using a regional simu-
lation framework. However, these are cloud-focused and do
not address edge-specific constraints. GreenScale [6] models
carbon emissions in edge-cloud systems based on workload,
renewables, and runtime variability, enabling efficient schedul-
ing of edge tasks. In IoT contexts, CADTO [29] introduces
a carbon-aware offloading scheme for NOMA-enabled edge
systems, and LSCEA-AIoT [30] targets low-carbon data acqui-
sition in AIoT environments. For DNNs, CarbonCP [31] applies
conformal prediction for carbon-aware partitioning in edge-
cloud scenarios. However, none of these methods tackle the
combined challenges of multi-DNN execution, heterogeneous
edge hardware, and real-time carbon adaptation.

III. BACKGROUND

This section introduces key concepts for carbon-aware edge
optimization. We define operational emissions and carbon in-
tensity (CI), explain how CI varies over time and region, and
formalize the carbon footprint (CF).

A. Operational Emissions and Carbon Intensity

The environmental impact of edge computing systems is
largely determined by their operational emissions, which refer
to the CO2 released during active system operation. These
emissions depend on two key factors: the total energy consumed
and the carbon intensity (CI) of the electricity supplying that
energy. While energy usage reflects how much electricity (in
kWh) is consumed, it does not indicate how environmentally
damaging that energy is.

Carbon intensity (CI) represents the average carbon dioxide
emissions per unit of electricity generated and is a key metric

3

for evaluating the environmental impact of energy consumption.
While energy consumption reflects how much electricity an
edge device uses (in kWh), it does not account for how that
electricity is produced. CI, measured in gCO2/kWh, quantifies
the emissions associated with generating one unit of electricity
and therefore captures the environmental cost of energy usage.

In power systems that combine multiple generation sources,
such as solar, wind, coal, or natural gas, the overall CI depends
on the emission factor of each source and its contribution to
the total supply. Mathematically, CI at time t is expressed as:

CI(t) =

∑G
i=1 Ei(t) · CEFi∑G

i=1 Ei(t)
(1)

where Ei is the electricity generated by source i, CEFi rep-
resents the carbon emission factor of source i (in gCO2/kWh),
and G is the total number of electricity generation sources.

Different generation sources have widely different car-
bon intensities. For example, coal (820 gCO2/kWh), oil
(650 gCO2/kWh), and natural gas (490 gCO2/kWh) are
among the most carbon-intensive sources, whereas wind
(11 gCO2/kWh), nuclear (12 gCO2/kWh), and hydro (24
gCO2/kWh) are much cleaner. Thus, minimizing emissions in
edge systems requires reducing both energy use and the carbon
intensity of the energy source.

B. Temporal and Spatial Variability of Carbon Intensity

Equation 1 highlights that CI is both time- and region-
dependent. Although Ecomap does not control the grid’s gen-
eration mix or migrate workloads geographically, it operates
under the realistic assumption that power grids dynamically
adjust their energy mix based on time of day, demand, and
weather. For instance, solar contributes more during the day,
reducing CI, while fossil fuels often dominate in the evening or
during peak demand, increasing CI. Similarly, regions with high
renewable capacity (e.g., California) tend to have lower average
CI than those dependent on fossil fuels. These shifts in energy
composition cause CI to vary over time, even when a system’s
energy consumption remains constant. Figure 1 illustrates these
variations by location, season, and grid composition.

C. Carbon Footprint

The carbon footprint (CF) of an edge computing system
quantifies the total amount of CO2 emitted during its operation
due to energy use. When electricity is drawn from a power
grid composed of multiple energy sources, each with its own
emission characteristics, the resulting emissions reflect the
combined environmental impact of that energy mix. As such,
CF is determined by both the amount of energy consumed and
the CI of the electricity used [4]:

CF =

∫
t

E(t)× CI(t) (2)

where CF represents the operational emissions of the system
(gCO2), E(t) denotes the energy consumed by the system
(kWh), and CI(t) is the carbon intensity of the electricity

12 AM 12AM 12AM 12AM8 AM 4 PM 8 AM 4 PM 8 AM 4 PM

Time of Day

0.0

200.0

400.0

600.0

800.0

C
ar
b
o
n
In
te
n
si
ty

g
C
O

2
eq

/
k
W

h California Finland Queensland

1(a) Regional carbon intensity variation

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10
0.0

25.0

50.0

75.0

100.0

125.0

150.0

C
ar
b
o
n
In
te
n
si
ty

g
C
O

2
eq

/
k
W

h

Winter Spring Summer Fall

1(b) Seasonal carbon intensity variation in Finland

0 2 4 6 8 10 12 14 16 18 20 22
0.0

5000.0

10000.0

P
o
w
e
r
(M

W
)

Power Production Breakdown

nuclear

geothermal

biomass

coal

wind

solar

hydro

gas

oil

unknown

hydro discharge

0 2 4 6 8 10 12 14 16 18 20 22
Time (hours)

10000.0

20000.0

30000.0
C
a
rb

o
n
In

te
n
si
ty

(g
C
O

2
e
q
/
k
W

h
)

Carbon Intensity

1(c) CI variation with power source composition

Fig. 1: Examples of variation of Carbon Intensity over location,
time, and energy mix of the power grid. (Data source [32])

source (gCO2/kWh). As CI varies with region and time, identi-
cal energy consumption can result in varying amounts of CO2

depending on the region and time. Minimizing CF in edge
computing systems presents unique challenges compared to
centralized cloud environments, primarily due to the real-time
inference tasks that edge computing supports.

IV. METHODOLOGY

Ecomap is a sustainability-driven framework that optimizes
multi-DNN execution on heterogeneous edge servers under
strict latency constraints. A key feature is its dynamic adjust-
ment of the maximum power threshold (Pthreshold) based on
real-time carbon intensity (CI). This allows the system to lower
emissions without sacrificing performance. Figure 2 shows a
high-level overview of the framework.

Input and design space: Ecomap takes as input: a a set of
DNNs to be executed concurrently; b the available computing
components; c a list of hardware operational modes; and d
CI forecast for the next 24 hours. Each mode defines a specific
configuration, including active CPU cores, CPU/GPU/memory
frequencies, and an associated maximum power cap(Pmax) of
that mode (Section IV-A). These inputs create a large design
space of mappings and settings. To explore it efficiently,
Ecomap uses the Latent Action Monte Carlo Tree Search
(LA-MCTS) algorithm, which relies on a transformer-based
estimator to predict throughput and power consumption and
rank candidate solutions (Sections IV-B-IV-C).

4

Input Design Space

A B j

k

r

st

h

u C

v

x

w

D

m

n

...
i

P
o

w
er

 E
ff

ic
ie

n
t

Latency Efficient

GPU CPU

Cluster

Cluster

f2

f4

Cluster

Cluster

f2

f4

Cluster

Cluster

f2

f4

f3
f5
f6
f1

Core

Core
Core

Core

f3
f5
f6
f1

Core

Core
Core

Core

f3
f5
f6
f1

Core

Core
Core

Core

Mode 0

...

Mode 1

Mode 2

Mode 7

Operational Modesc

ResNet-50 DenseNet169 VGG-19

a Multi – DNN Workload

...

b Computing Components

GPUGPU CPUCPU

Mixed Quality Models

Operational Mode

Mode 0

...

Mode 1

Mode 2

Mode 7

Pmax()2

3

VGG-19

VGG-16

ResNet-50

ResNet-34

Carbon Intensity ()Carbon Intensity ()

0.1 0.3 0.5 0.7

CI

Estimator

5 6

LA - MCTS

×
WL WP

×
–

Feedback

1

Pmax 5

Ecomap Mapping

Configuration

GPU

CPU

Configuration ResNet-34

VGG-16

DenseNet121

L1 L14...
L1 L121...

L13 L16...

...

ResNet-34

VGG-16

DenseNet121

L15 L34...
Ø

L1 L12...
...

Cluster

Cluster

f2

f4

Cluster

Cluster

f2

f4

Cluster

Cluster

f2

f4

f3
f5
f6
f1

Core

Core
Core

Core

f3
f5
f6
f1

Core

Core
Core

Core

f3
f5
f6
f1

Core

Core
Core

Core

DenseNet169

DenseNet121

CPU f3 ResNet-50[L1]
CPU f3 ResNet-50[L2]

...
GPU f4 VGG-19[L19]

Mapping
CPU f3 ResNet-50[L1]
CPU f3 ResNet-50[L2]

...
GPU f4 VGG-19[L19]

Mapping
CPU f3 ResNet-50[L1]
CPU f3 ResNet-50[L2]

...
GPU f4 VGG-19[L19]

Mapping

CI Forecastd

0 1 21 22 23. 0 1 21 22 23.
Hour

CI

𝐶𝐼𝑚𝑖𝑛
𝑑𝑎𝑦

𝐶𝐼𝑚𝑎𝑥
𝑑𝑎𝑦

0 1 21 22 23.
Hour

CI

𝐶𝐼𝑚𝑖𝑛
𝑑𝑎𝑦

𝐶𝐼𝑚𝑎𝑥
𝑑𝑎𝑦

0 1 21 22 23.
Hour

CI

𝐶𝐼𝑚𝑖𝑛
𝑑𝑎𝑦

𝐶𝐼𝑚𝑎𝑥
𝑑𝑎𝑦

&

Latency bins Power bins

7S
o
ft

m
a
x

sc
o

re
s

1

Latency bins Power bins

7S
o
ft

m
a
x

sc
o

re
s

1

Latency bins Power bins

6S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

6S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

3S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

3S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

4S
o
ft

m
a
x

sc
o

re
s

3

Latency bins Power bins

4S
o
ft

m
a
x

sc
o

re
s

3

Latency bins Power bins

7S
o
ft

m
a
x

sc
o

re
s

1

Latency bins Power bins

6S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

3S
o
ft

m
a
x

sc
o

re
s

5

Latency bins Power bins

4S
o
ft

m
a
x

sc
o

re
s

3

Latency bins
Decreasing latency

Latency bins
Decreasing latency

Power bins
Increasing Power

Power bins
Increasing Power

Reward

Fig. 2: Overview of Ecomap: The framework dynamically sets the edge server’s power threshold based on current carbon intensity,
reducing emissions while maintaining performance.

Runtime: At runtime, Ecomap adapts Pthreshold to match
real-time CI levels. This ensures emissions are reduced under
changing grid conditions while maintaining required perfor-
mance (Section IV-D). Once Pthreshold is set, Ecomap uses
its estimator and LA-MCTS to find the best DNN-to-hardware
mapping and select an appropriate operational mode.

Enabling mixed-quality models: Ecomap monitors latency
and power of running services. When latency thresholds are
violated, it adapts by switching to lighter DNN variants from
the same family, known as mixed-quality models. These re-
placements reduce delay with acceptable accuracy loss (Sec-
tion IV-E). This mechanism ensures service-level agreements
(SLAs) are met under changing workloads and CI levels.

A. Operating Modes

We define device-specific hardware operational modes to
control power consumption. Each operational mode corre-
sponds to a specific hardware configuration, defined by parame-
ters such as the number of active CPU cores and the frequencies
of the CPU, GPU, and memory. These modes are precomputed
and stored in a lookup table (LUT), which is used at runtime
(Section IV-D) to select appropriate modes.

TABLE I: Operating modes

oj c fCPU fGPU fmem Pmax
1 8 2.2GH 1.3GH 2.1GH 30W
2 6 2.2GH 1.3GH 2.1GH 26W
3 4 2.2GH 1.3GH 2.1GH 22W
4 8 1.8GH 828MH 2.1GH 16W
5 6 1.8GH 828MH 2.1GH 13W
6 4 1.8GH 828MH 2.1GH 11W
7 8 1.2GH 675MH 1.2GH 8W
8 6 1.2GH 675MH 1.2GH 6W

We define the LUT of operational modes as O = o1, . . . , ok,
where each oj is a distinct mode and k is the total number of
modes. Each mode is described by the tuple:

oj = (c, fCPU, fGPU, fmem, Pmax) (3)

Here, j is the ID of the mode, c is the number of active CPU
cores, fCPU, fGPU, and fmem are the operating frequencies of
the CPU, GPU, and memory, respectively, and Pmax is the

corresponding power cap. Table I shows eight precomputed
operational modes we developed for the NVIDIA Jetson AGX
Xavier board, spanning 8 W to 30 W in small increments.

Considering the multitude of possible combinations that the
parameters in Equation 3 can have, iteratively tuning CPU and
GPU settings to meet required power caps is not efficient. This
is because adjusting one component may require coordinated
changes to the others. These adjustments must also consider
how each DNN uses system resources. By using predefined op-
erational modes with fixed hardware configurations and power
caps, Ecomap avoids runtime tuning via trial and error. Each
mode in the LUT is derived from offline profiling across diverse
workloads. Although Table I shows one representative Pmax
per mode, actual consumption may vary. For example, mode
o1 may run below 26W or 22W depending on workload and
partitioning. These values are statistical abstractions that guide
exploration. At runtime (Section IV-D), the power estimator
predicts a discrete power class for each mapping. MCTS then
prioritizes modes that previously supported mappings in that
class, avoiding exhaustive exploration while still adapting to
workload changes. Adding finer-grained DVFS steps would
expand the design space with little benefit, as many new
configurations yield minimal power gains due to architectural
limits like shared memory and voltage regulators.

B. Latency and Power Estimator

As mentioned before, Ecomap takes as input: (i) a set of
DNNs to be executed simultaneously; (ii) the set of available
computing components (e.g., CPU, GPU); and (iii) the support-
ing operational modes. To process this data, we transform it into
numerical vector representations using a learnable composite
embedding module [33] that incorporates the latent representa-
tions of: (i) each DNN layer within the workload, (ii) each
available computing component, and (iii) each operational
mode oj . This generated vector representations are used as the
input sequences (S) to our estimators. Ecomap utilizes layer
partitioning to break down any DNN model into smaller sub-
DNNs, requiring a layer-block level input representation, where
each block consists of one or more fundamental layers of sim-
ilar type. Thus, for each layer-block in the workload, we apply
our tailored embedding module to create a sequence of tuples,

5

Add & Norm

Add & Norm

Multi-Head Attention

Feed Forward

Transformer Block

Layer

Embedding

Mode

Embedding

Computing

Componenet

Embedding

C
o

n
c

a
te

n
a
ti

o
n

+

Positional

Embedding

Input

Embedding

Embedding Block

L
a

te
n

c
y

Softmax score

P
o

w
e

r

Classifier Block

Fig. 3: Architecture of our transformer based estimator.

each consisting of a layer-block, a computing component, and
its corresponding operational mode oj .

The input sequence S is then processed by our transformer-
based estimator, which consists of three core components. First,
a composite embedding module creates the input representa-
tion for each token using: (i) a global layer index embedding (to
uniquely identify each DNN layer); (ii) a computing component
embedding (e.g., CPU as 0, GPU as 1); (iii) a mode ID
embedding representing the active operational mode; and These
components are summed to form the final input vector per
token. Second, a multi-head self-attention layer captures
dependencies across layers and resources in the mapping se-
quence. Lastly, a feed-forward network produces latency and
power outputs, using separate classification heads with quantile-
based bins. Figure 3 illustrates this architecture.

Unlike previous methods [8], [17], our distributed embedding
vectors are learnable, enhancing the transformer’s ability to es-
timate latency and power consumption more accurately. When
the DNNs are split into sub-DNNs, additional communication
delays will be introduced between computing components,
making appropriate selection of split points and computing
components crucial. Especially for latency prediction, these
communication delays can be significant. However, explicit
profiling of these delays often involves oversimplified assump-
tions of linear correlation [34]. To mitigate this, our method
models this implicitly, opting for end-to-end prediction. Our
learnable embedding vectors provide more context to the esti-
mator to effectively model communication delays implicitly.

Building on input sequence S, we use the transformer-
based estimator [35] presented above to assess any mapping
M and predict its latency and power consumption under each
different mode oj . The choice of a transformer-based estimator
is due to its ability to identify long-sequence patterns, which
is crucial for managing higher-order multi-DNN workloads.
Estimators from previous studies [8], [17], although effective
for smaller workloads, tend to underperform with larger multi-
DNN workloads, often resulting in sub-optimal mappings.

A major differentiator of Ecomap from previous state-of-the-
art approaches is that it is designed for classification rather
than regression. While estimating exact values for latency
and power consumption could potentially yield better multi-
DNN mappings, it also requires significantly larger datasets
to manage the imbalances in target values, especially due to

the relatively rare nature of optimal mappings in the mapping
space. To address this, we define the estimator’s target as a
quantile distribution of N discrete classes(bins), transforming
the problem into a classification task. The N quantiles are
equal in sample size, which helps overcome data imbalance.
Furthermore, to manage the multi-objective nature [36] (latency
and power), we employ two separate fully connected layers,
each with N output neurons corresponding to the target classes.

To ensure that the quantile-based classes(bins) adequately
represent the latency and power spaces, we used a systematic
mapping generation strategy to build the estimator dataset.
This strategy explores a wide range of DNN combinations
and resource allocations. The estimator does not predict the
latency of individual DNNs, which is difficult due to cache
and scheduling effects on CPUs. Instead, it models the average
system-level latency of the entire workload, defined as:

Average latency =
U∑U

i=1 Throughputi
(4)

where U is the number of concurrently running DNNs. This
latency proxy correlates well with system responsiveness and
supports consistent class labeling. In addition, we formed
latency classes(bins) in latency decreasing order and power
classes(bins) in power increasing order. This allows the MCTS
to search for mappings with higher latency class predictions
(corresponding to lower actual latency) and lower power class
predictions (corresponding to lower actual power), creating
a clear distinction between optimization objectives. The use
of quantile-based classification avoids regression instability
and handles class imbalance effectively. Furthermore, during
runtime, the statistical nature of the MCTS algorithm allows
the estimator to still identify and classify mappings with values
outside the training range into the nearest valid quantile class,
maintaining robustness under unseen workloads.

C. LA-MCTS Module

Our estimator module is the mechanism for evaluating any
candidate mapping. To address the exploration of the mappings,
we integrate the Latent Action-MCTS (LA-MCTS) [37] algo-
rithm, a highly efficient space exploration module. MCTS is
a heuristic approach that efficiently navigates extensive design
spaces by iteratively interacting with its decision tree within
a set computational budget [38]. This tree holds all possible
mappings for a given design space. Although traditional MCTS
effectively minimizes a cost function through stochastic pro-
cesses, it tends to converge slowly.

To enhance the convergence rate of MCTS, we adopted LA-
MCTS, which iteratively learns to partition the design space
hierarchically. For the most part, LA-MCTS follows the same
steps as MCTS. Initially, it generates random mappings, and
these mappings are then evaluated using the estimators to
obtain the reward values. The reward values are then used
for the traditional MCTS exploration and exploitation. On top
of traditional MCTS, in each iteration, LA-MCTS examines
specific regions of the decision tree and applies k-means
algorithm with k = 2 to categorize them into two clusters,

6

GPU f4 ResNet-34

GPU f4 DenseNet-121
...

CPU f3 ResNet-34

Mapping

Latency

S
o

ft
m

a
x
 s

co
re Power

(i) Architectural

configurations

(ii) Fit 2 k-means

clusters

(iii) SVM learns

boundary

(iv) Prune design

space

L14 L34...
L1 L121...

L1 L13...

Fig. 4: Design space pruning via LA-MCTS.

distinguishing between promising (good) and less promising
(bad) solutions. Subsequently, LA-MCTS uses Support Vector
Machines (SVM) to learn a decision boundary that extrapolates
the patterns identified by the k-means to the broader design
space. We use k = 2 because the goal of clustering in LA-
MCTS is to support binary classification for adaptive pruning.
The clustering step simply separates explored configurations
into two broad categories, those that appear more promising
and those that do not, based on their reward values. This binary
distinction is sufficient for the SVM to learn a clear decision
boundary, allowing the search to prune unpromising regions
efficiently. Using more clusters (e.g., k = 4 or k = 8) would
increase the complexity of the classification model and may not
improve search effectiveness, especially given the limited sam-
ples available at each iteration. Prior work on LA-MCTS [37]
has shown that a two-cluster approach balances pruning per-
formance and convergence stability in high-dimensional design
spaces. As each simulation step involves an estimator infer-
ence, by effectively pruning less promising nodes, LA-MCTS
eliminates wasteful estimator inferences and generates solutions
quickly. Figure 4 provides a high-level overview of the iterative
process of LA-MCTS and how it prunes the design space to
focus on more viable solutions. Overall, LA-MCTS consistently
converges faster than standard MCTS by reducing the number
of estimator evaluations, making it well-suited for complex,
time-constrained multi-DNN mapping tasks.

To address the multi-objective nature of our problem, we
formulate a reward function V . This function evaluates any
mapping M by calculating the weighted difference between the
predicted latency class and the predicted power consumption
class. Additionally, to ensure the satisfaction of the power con-
straint (Pthreshold), the reward for any mapping that estimated
to exceed the maximum allowable power consumption is set
to negative infinity, effectively removing it from consideration
as a viable solution. The classification model provides an
initial estimate, while the MCTS search explores candidate
mappings within and around the predicted class boundaries.
This enables Ecomap to adapt to new or edge-case workloads
by probabilistically sampling viable solutions, even if exact
matches were not present during training. The reward function

is formulated as:

V(M) =


WL · L(M)−WP · P(M),

if P(M) ≤ Pthreshold

−∞, otherwise
(5)

where WL represents the weight assigned to latency, L(M)
denotes the estimated latency class for the mapping M, WP

is the weight assigned to power consumption, and P(M)
indicates the predicted power consumption class. The weights
WL and the WP are determined at runtime based on the
latency requirement and power threshold. The maximum al-
lowable power consumption, determined by CI (Section IV-A)
is denoted by Pthreshold. It is important to note that the LA-
MCTS does not directly use the CI, but instead bases its
solutions on the Pthreshold, which is computed from the CI.

The reward function provides a scalar feedback to the LA-
MCTS algorithm, enabling it to compare and rank different
mappings efficiently during search. For feasible mappings (i.e.,
those satisfying the power constraint), this scalar reflects a
weighted trade-off between latency and power classes. Infea-
sible mappings are immediately excluded by assigning them
a reward of −∞. These scalar reward values are used in LA-
MCTS as follows: (i) they are used to rank candidate mappings
within each iteration, (ii) they drive the k-means clustering to
distinguish promising vs. non-promising mappings, and (iii)
they serve as labels for training the SVM classifier, which then
predicts which regions of the search space are worth exploring
further. The mapping with the highest reward among all feasible
configurations is ultimately selected as the final output.

D. Runtime

At runtime, Ecomap incorporates a 24-hour CI prediction
for the electricity grid to dynamically manage the operational
power thresholds. For this Ecomap uses a highly accurate
carbon intensity forecasting method presented in [39]. This
method uses a two-tier approach for forecasting. The first tier
employs multilayer perceptron (MLP) networks and predicts
electricity generation for each source in the grid using historical
data for each source and weather forecasts for the next 96 hours.
The second tier employs a hybrid CNN-LSTM based network
and predicts carbon intensity based on the first-tier predictions
and carbon intensity data from the past 24 hours. Using this
method, Ecomap forecasts the CI value for the next 24 hours
in an hourly granularity, and based on this forecast, Ecomap
determines the minimum (CIday

min) and maximum (CIday
max) values

of CI over the next 24 hours (for the day).
During the runtime, Ecomap uses real-time CI data from

[32], which provides region wise CI values in an hourly
granularity. The CI from this source provides a more accurate
value as this source obtains the data from the relevant electricity
production entities. Additionally, as described in Section III-B,
while CI generally fluctuates throughout the day, its pattern
varies significantly by region and energy mix. Ecomap adapts
to these dynamics by leveraging the CI forecasts to schedule
high-power modes when emissions are low and transitioning
to lower-power configurations during high-CI periods. When

7

CI is at its minimum, the edge device operates at the highest
power threshold, delivering services with minimal delays and
maximum performance while taking advantage of the low envi-
ronmental impact. As CI increases throughout the day, Ecomap
dynamically adjusts the maximum allowable power threshold
(Pthreshold) and transition between operational modes through
MCTS exploration. The decision to use granular power thresh-
olds, as shown in Table I, is crucial for maintaining a balance
between sustainability and performance.

Typically, the default operational mode configurations show-
case significant maximum power deviations. With these high
variations, the computational capability of the system reduces
drastically. Therefore, while employing the default modes can
result in significant emission reductions, they may degrade sys-
tem responsiveness to unbearable levels. Through carefully pre-
selected core combinations and frequencies, EcoMap ensures
that the frequencies and core utilization of the computing com-
ponents produce viable combinations that remain functional
across a wide variety of workloads. Conversely, a smaller dif-
ference in Pmax limits the reduction in computational capability,
which in turn allows the workloads to identify mappings that
do not exhibit abrupt performance degradation. By defining
operational modes with small, incremental differences in Pmax,
Ecomap ensures smooth transitions between configurations,
enabling more precise control of power consumption while
adapting to varying carbon intensity levels.

The variability of CI is generally low over short time inter-
vals, and CI data re typically reported or forecasted at an hourly
resolution [40]. Exploiting this property, Ecomap updates the
maximum power threshold at most once per hour. The CI value
at the beginning of each hour is used throughout that hour to
guide decisions. This periodic scheduling reduces the overhead
of frequent remapping while maintaining alignment with CI
trends, ensuring stable and efficient runtime behavior. To avoid
erratic behavior (e.g., frequent back-and-forth changes in Pmax),
Ecomap updates the power threshold only when CI changes
by at least 10% of the predicted range. These fine-grained
adjustments allow the system to remain stable and responsive
to considerable changes in CI without significant disruptions
to service performance.

Ecomap also handles dynamic service arrivals. For each
new service, it uses the latency and power estimator with
LA-MCTS to find a mapping that satisfies the current power
threshold (Pthreshold) set by CI . When multiple mappings
meet this constraint, Ecomap applies the reward function from
Subsection IV-C to prioritize lower latency while respecting
power and carbon constraints.

As discussed in III-C, CI varies throughout the day due to the
evolving energy mix in the grid, even when energy consumption
remains constant. While Ecomap does not control the grid’s
sources or migrate workloads geographically, it does exploit
temporal CI variation. At runtime, Ecomap adapts to these
CI changes by adjusting the system’s power budget and re-
evaluating workload mappings accordingly. This is not a simple
DVFS problem. Each new power budget introduces a differ-
ent set of available hardware configurations (e.g., CPU/GPU

modes), and the system must determine whether DNN models
should be split, remapped, or substituted with lighter alterna-
tives. This triggers a multi-objective scheduling process that
jointly considers latency, power, and model quality.

E. Enabling Mixed-Quality Models

Ecomap ensures that all running services meet predefined
latency and power thresholds by actively monitoring their
performance in real time. Changes in the maximum allowable
power threshold (Pthreshold), driven by variations in carbon
intensity (CI), or the arrival of new service requests, can
lead to resource contention and latency violations. To address
these issues, Ecomap dynamically adapts by leveraging mixed-
quality models, which replace computationally intensive DNNs
with lighter alternatives from the same model family. These
alternatives, referred to as mixed-quality models, offer reduced
computational requirements with slightly lower accuracy for
lower quality service levels. Generally, model size and accuracy
within a model family showcase a trade-off relationship, where
accuracy exhibits diminishing returns as model size increases.
Consequently, strategically selected model variants serve as
suitable backbones without significant accuracy drops. These
model switches occur only when necessary to preserve system
responsiveness under tighter power budgets or high contention.
This allows Ecomap to meet real-time latency constraints even
under unfavorable CI conditions, while ensuring that service
quality remains high unless adaptation is essential.

Ecomap monitors services continuously and detects latency
violations triggered by changes in Pthreshold or the addition
of new service requests. When a latency violation is detected,
Ecomap handles it by using a two-level prioritization policy.
First, Ecomap begins by identifying the service experiencing
the highest latency relative to its threshold. Let R denote this
service, with its associated DNN represented as Dj , where j is
the service level. Ecomap replaces Dj with the next available
lightweight alternative from the set of mixed-quality models,
Q(D) = D1, D2, . . . , Dq . The selection is guided by the
following optimization:

Find Dk ∈ Q(D) such that L(Dk) ≤ Lmax and ∆A(Dk
j) ≤ ϵ,

(6)
where j is the current service level, k is the target service
level, q is the number of service levels, L(Dk) is the latency
of Dk, Lmax is the maximum allowable latency, ∆A(Dk

j)
is the accuracy drop of Dk compared to Dj , and ϵ is the
maximum acceptable accuracy drop. If latency constraints are
still not met after the first replacement, Ecomap identifies the
most computationally intensive service in the workload that is
in a higher QoS level, and replaces that with a lightweight
alternative to reduce contention and free up resources for other
services. Ecomap alternates between these two DNN switching
approaches until the constraints are met, all services have
reached their lowest allowable model variant, or a predefined
retry limit is reached. This two-level prioritization, first by
latency then by resource usage, ensures that adjustments are
effective while avoiding unnecessary model downgrades.

8

TABLE II: Supported services and mixed-quality models
Service Default DNN (Level-1) Level-2 Level-3
Object Detection MNASNet1 3 MNASNet1 0 MNASNet0 75
Object Classification EfficientNet v2 s EfficientNet b1 EfficientNet b3
Object Tracking ResNet152 ResNet101 ResNet50
Depth Estimation ResNet152 ResNet101 ResNet50
Abnormal Behavior Detection VGG19 VGG16 VGG13
Facial Expression Recognition DenseNet169 DenseNet161 DenseNet121

Once a new mapping is generated due to workload changes
or CI changes, the mapping is evaluated to measure the
latency of each DNN. If service level changes need to be
performed, instead of conducting LA-MCTS exploration in
the entire configuration space, Ecomap narrows the search to
configurations directly affected by the updated DNN to enhance
the speed of the search process. In addition, Ecomap utilizes
a refined search space for each DNN which is constructed
by evaluating the behavioral patterns under various mapping
configurations. This space deprioritizes the regions where layer
splitting leads to latency increases exceeding 30%. At runtime,
this tailored search significantly reduces computational over-
head, as it focuses on high-probability configurations while
avoiding suboptimal areas. This strategy is particularly effective
because in this scenario Ecomap adjusts only one DNN at a
time, ensuring that the tailored search remains fast and precise.

Ecomap identifies two main cases where remapping may be
necessary. In Scenario 1, the system is under pressure, due
to either a rise in service requests or a reduction in the power
budget (from a higher CI). In this case, Ecomap performs a full
remapping to ensure all services can meet their constraints. In
Scenario 2, the system operates under relaxed conditions, such
as fewer requests or lower CI. Here, Ecomap performs targeted
remapping: it only replaces DNNs that currently violate their
latency limits or can be upgraded to higher-quality versions.
This selective strategy avoids unnecessary changes and reduces
the number of model switches. On average, fewer than five
model transitions occur per day, and each service switch com-
pletes in about 30 seconds (see Section V-C). By dynamically
adapting services through mixed-quality models and leveraging
tailored search, Ecomap maintains latency compliance even
under dynamic conditions and balances power efficiency and
sustainability, providing an efficient solution for managing
multi-DNN workloads in edge computing environments.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate Ecomap’s performance in latency,
power, emissions, and sustainability using the NVIDIA Jetson
AGX Xavier (JAX) edge server. JAX features (i) a Volta GPU
with 512 CUDA and 64 Tensor cores (10 TFLOPS peak), (ii) a
Carmel CPU with ×4 ARMv8.2 dual-core clusters at 2.26 GHz,
and (iii) 32 GB LPDDR4x memory.

Ecomap is developed using PyTorch, which supports the
integration of diverse DNN architectures and enables fine-
grained partitioning of multi-DNN workloads. To manage these
workloads, we created a custom PyTorch-powered compute
library that enables dynamic mapping of DNNs onto the
edge server’s computing components. The training dataset
for Ecomap’s transformer-based estimator consists of 8,000

mappings, all evaluated through real execution on the NVIDIA
Jetson AGX Xavier platform. Each workload includes 5 to
10 DNNs and is executed across the 8 predefined operational
modes, with 1,000 mappings collected per mode to ensure
broad coverage. To ensure the dataset captures both efficient
and inefficient mappings, we avoided fully random generation,
which tends to overrepresent poor configurations. Instead, we
used a rule-based strategy. First, we profiled each individual
DNN by testing various ways of splitting it between CPU
and GPU, measuring end-to-end throughput for each split
configuration. This analysis revealed that only certain split
positions maintain acceptable performance, while others in-
troduce significant communication overhead and performance
degradation. We prioritized the viable splits identified in this
profiling phase when generating workload mappings. For multi-
DNN workloads, we created mapping scenarios by varying
the number of DNNs assigned to each component and the
number of models split across CPU and GPU. The rule-based
strategy ensured that mappings captured a range of behaviors,
from efficient to inefficient, enabling the estimator to learn
distinctions across the performance spectrum. Each mapping
was executed for 30 seconds on the device, following a 5-
second warm-up period to allow transient effects to settle. For
each configuration, we recorded per-DNN throughput, total
system power consumption, and average system latency. We
consider only execution latency, assuming images are available
at intended frequencies, without including image capturing.

To ensure a comprehensive evaluation, we leveraged a large
set of models available in the torchvision.models li-
brary, resulting in a total space of 50 widely used DNNs.
These models are categorized into the following families:
(i) AlexNet, (ii) DenseNet, (iii) EfficientNet, (iv) GoogLeNet,
(v) InceptionV3, (vi) MNASNet, (vii) MobileNetV2, (viii) Mo-
bileNetV3, (ix) RegNet, (x) ResNet, (xi) ShuffleNetV2,
(xii) SqueezeNet, (xiii) VGG, and Ecomap’s design ensures
compatibility with most of the models defined in PyTorch,
making it adaptable to diverse application requirements. We
trained our estimator for 100 epochs with 80% of our
dataset using AdamW optimizer with 0.0001 learning rate and
CosineAnnealingLR scheduler for smooth approximation
of the most optimal model parameter set. For validation, we
evaluated our estimator on the remaining and unseen test subset.
We evaluated the trained model using top-1 and top-3 accuracy
metrics. Our top-3 definition considers predictions accurate if
they match the true class or either adjacent class, which is
meaningful since classes represent sorted value ranges. Top-1
accuracies were 78.59% (latency) and 81.69% (power), while
top-3 accuracies reached 98.79% and 99.17%, respectively,
demonstrating estimator robustness.

For our experiments, we utilized three distinct 5-day periods
to evaluate the server’s performance under varying carbon
intensity (CI) conditions and workloads. For this we extracted
real world carbon intensity data from Electricity Maps web-
site [32], which provides data from real energy supply agencies
from many countries around the world. Week-1 and Week-
3 exhibit significant variability in CI , reflecting fluctuating

9

energy grid dynamics, whereas Week-2 demonstrates relatively
stable CI with minimal fluctuation. These scenarios allow us
to test Ecomap’s adaptability to different environmental and
operational conditions.

Regarding user-based service requests, we selected six types
of services: (i) object detection, (ii) object classification,
(iii) object tracking, (iv) depth estimation, (v) abnormal be-
havior detection, and (vi) facial expression recognition. Each
service supports mixed-quality models to ensure adaptability
under latency violations. Table II shows the default DNN (level-
1) and the mixed-quality models (level-2 and level-3) used
for each service. In our evaluation, we focus on the backbone
DNNs commonly used in each service task, without including
task-specific layers such as detection heads or post-processing
modules. This is justified for two reasons: (i) task-specific
layers contribute minimally to overall compute time, while the
backbone dominates inference latency on edge devices, and
(ii) adding these layers would increase system complexity with-
out affecting the mapping and power optimization challenges
that Ecomap addresses. The selected models (e.g., EfficientNet,
ResNet, VGG) are widely used as backbones for tasks such
as classification, detection, and tracking [41], [42], and reflect
real-world edge deployment practices. Since Ecomap is task-
agnostic and focuses on scheduling and adaptation across het-
erogeneous workloads, evaluating the backbone models alone
effectively captures the relevant system behavior.

Each week also varies in the number of service requests
received by the server. In Weeks 1 and 2, the maximum number
of requests the server could handle without significant delays
or becoming unresponsive was capped at 15 concurrent service
instances. For Week-3, the maximum number of requests was
reduced to 10 to evaluate system performance under medium-
to-heavy workloads. The workload patterns for all the weeks
were generated by mimicking the workload variation patterns
found in the Microsoft Azure Traces [43], which provides com-
prehensive statistics and performance metrics from its cloud
server resources. The weekly characteristics, including CI
variability and workload intensity, are summarized in Table III.

TABLE III: Weekly experiment characteristics

Week Name CI Variability Workload Intensity
Week-1 High High
Week-2 Low High
Week-3 High Medium

In our experiments, we evaluated Ecomap under two con-
figurations that reflect different latency thresholds: EcomapR
which operates under a relaxed threshold of 2 seconds and
EcomapS which operates under a strict deadline of 500 mil-
liseconds. These thresholds reflect different quality-of-service
requirements, allowing us to assess Ecomap’s ability to balance
latency and sustainability under varying constraints.

For a comprehensive evaluation, we compare Ecomap
against four state-of-the-art multi-DNN management frame-
works: (i) OmniBoost [8], a greedy throughput optimization
framework for multi-DNN workloads, which serves as the
baseline for comparison; (ii) ODMDEF [17], a manager uti-

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

200

400

600

C
I
(g

C
O

2e
q
/
k
W

h
)

(a) CI Variation

OmniBoost

ODMDEF

HaX-CoNN

MapFormer

EcomapR

EcomapS

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

8

10

12

15

S
e
rv

ic
e
R
e
q
u
e
st
s

(b) Workload Variation

Day 1 Day 2 Day 3 Day 4 Day 5

0.5

0.8

1.0

N
o
rm

a
li
ze

d
P
o
w
e
r

(c) Normalized Daily Power Consumption

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

1.0

2.0

3.0

4.0

N
o
rm

a
li
ze

d
L
a
te
n
cy

(d) Normalized Daily Latency

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

N
o
rm

a
li
ze

d
C
a
rb

o
n

F
o
o
tp

ri
n
t

(e) Normalized Daily Total Carbon Footprint

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

1.5

N
o
rm

a
li
ze

d
C
D
P

(f) Normalized Daily Carbon Delay Product (CDP)

1

Fig. 5: Normalized comparison of Ecomap (EcomapR and
EcomapS) during Week-1 across (a) CI , (b) workload, (c)
power, (d) latency, (e) emissions, and (f) CDP over 5 days.
Lower is better in all charts.

lizing a combination of linear regression and k-NN classifiers
for DNN scheduling; (iii) Hax-Conn [7], a contention-aware
scheduling framework designed for concurrent DNN execution;
and (iv) MapFormer [20], a power-efficient framework aimed
at optimizing resource usage for multi-DNN workloads.

To evaluate the performance of Ecomap, we compared it
against all the aforementioned methods using a comprehensive
set of metrics. Specifically, we measured latency, power con-
sumption, daily carbon footprint, and the Carbon-Delay Product
(CDP). The daily carbon footprint quantifies the total opera-
tional emissions over a 24-hour period, providing a measure of
the environmental impact. Finally, the CDP, a product of latency
and carbon footprint, offers an integrated metric to evaluate the
trade-off between performance and sustainability.

A. Sustainability-Oriented Comparison

Figures 5-7 depict the comparison between all methods.
For Week-1, depicted in Figure 5, the CI exhibits significant

10

variability, ranging from approximately 200 gCO2/kWh to 500
gCO2/kWh. For each box plot used, it shows the median (center
line), interquartile range (box edges), and minimum/maximum
values, summarizing variability across the 24-hour period.
Power consumption: Ecomap shows strong power efficiency in
both EcomapR and EcomapS . On average, EcomapR reduces
power by 35% vs. OmniBoost and 32% vs. Hax-Conn, while
EcomapS achieves 39% and 32% reductions, respectively.
MapFormer, as expected, remains competitive in terms of
power consumption due to its focus on power optimization.
Latency: Ecomap effectively balances latency in both
EcomapR and EcomapS configurations. EcomapR ensures
low power while maintaining acceptable service responsive-
ness. EcomapS , under the strict 500 ms latency constraint,
achieves lower latency values across all days but incurs slightly
higher power usage. Compared to OmniBoost and Hax-Conn,
EcomapR maintains the latency with a slight increase of
about 2%, while EcomapS achieves 17% lower latency due
to Ecomap’s dynamic adaptation and mixed-quality models. In
contrast, due to its power-centric design, MapFormer performs
poorly. This underscores Ecomap’s ability to handle multi-DNN
workloads effectively under varying latency constraints.
Daily total emissions: Ecomap achieves significant reductions
in normalized daily total emissions for both configurations.
EcomapR, benefiting from its relaxed constraints, reduces
emissions by 35% compared to OmniBoost and 33% com-
pared to Hax-Conn on average across all days. EcomapS ,
despite stricter latency requirements, achieves 39% and 36%
lower emissions than OmniBoost and Hax-Conn, respectively.
These results demonstrate Ecomap’s effectiveness in minimiz-
ing emissions even under challenging operational constraints.
CDP: Ecomap excels in terms of normalized Carbon Delay
Product (CDP), which integrates latency and emissions to mea-
sure sustainability efficiency. Both EcomapR and EcomapS
outperform MapFormer significantly. EcomapR achieves 13%
lower CDP than MapFormer, while EcomapS achieves 36%
lower CDP. Despite MapFormer’s exceptional power efficiency,
its inability to adapt to latency constraints results in higher
latency, which increases its CDP. In contrast, despite the
stricter latency thresholds, the use of mixed-quality models
in EcomapR and EcomapS improves both carbon efficiency
and latency, making both configurations more sustainable
compared to other methods. In summary, Ecomap, in both
EcomapR and EcomapS configurations, outperforms state-of-
the-art frameworks in terms of power consumption, latency,
emissions, and sustainability efficiency. These results highlight
Ecomap’s adaptability and ability to balance performance and
sustainability in dynamic edge computing environments.

In Week-2 (Figure 6), with low CI variability (450–550
gCO2/kWh), Ecomap performs well across all metrics. In
terms of power, EcomapR slightly exceeds MapFormer on
some days but averages a 1% reduction, while EcomapS
reduces power by 9%. Both significantly outperform Om-
niBoost and Hax-Conn by 34% and 32%, respectively. For
latency, EcomapS achieves 18% and 16% lower latency than
OmniBoost and Hax-Conn, while MapFormer shows higher

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

200

400

600

C
I
(g

C
O

2e
q
/
k
W

h
)

(a) CI Variation

OmniBoost

ODMDEF

HaX-CoNN

MapFormer

EcomapR

EcomapS

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

8

10

12

15

S
e
rv

ic
e
R
e
q
u
e
st
s

(b) Workload Variation

Day 1 Day 2 Day 3 Day 4 Day 5

0.6

0.8

1.0

N
o
rm

a
li
ze

d
P
o
w
e
r

(c) Normalized Daily Power Consumption

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

1.0

2.0

3.0

4.0

N
o
rm

a
li
ze

d
L
a
te
n
cy

(d) Normalized Daily Latency

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

N
o
rm

a
li
ze

d
C
a
rb

o
n

F
o
o
tp

ri
n
t

(e) Normalized Daily Total Carbon Footprint

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

1.5

N
o
rm

a
li
ze

d
C
D
P

(f) Normalized Daily Carbon Delay Product (CDP)

1

Fig. 6: Normalized comparative analysis of Ecomap during
Week-2. For all comparison charts, lower is better.

delays due to limited latency handling. Regarding carbon
footprint, EcomapR cuts emissions by 32% vs. OmniBoost
and 30% vs. Hax-Conn; EcomapS achieves 37% and 35%
reductions. In CDP, Ecomap clearly outperforms MapFormer,
with EcomapR and EcomapS achieving 34% and 60% lower
values, respectively.

In Week-3 (Figure 7), with medium workload and high CI
variability (250–600 gCO2/kWh), Ecomap maintains strong
performance. In terms of power, EcomapR averages 10%
higher than MapFormer and EcomapS only 2% higher, while
both outperform OmniBoost and Hax-Conn by 34% and 32%,
respectively. Latency remains low: EcomapS is 6% lower
than OmniBoost and about 2% higher than Hax-Conn, with
EcomapR showing similar performance under relaxed con-
straints. For carbon footprint, EcomapR reduces emissions
by 33% vs. OmniBoost and 31% vs. Hax-Conn; EcomapS
achieves 38% and 36% reductions. In CDP, Ecomap outper-
forms MapFormer with 7% lower CDP for EcomapR and 28%
lower for EcomapS .

It is important to note here that, while the daily total

11

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

200

400

600

C
I
(g

C
O

2e
q
/
k
W

h
)

(a) CI Variation

OmniBoost

ODMDEF

HaX-CoNN

MapFormer

EcomapR

EcomapS

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time(h)

6

8

10

12

S
e
rv

ic
e
R
e
q
u
e
st
s

(b) Workload Variation

Day 1 Day 2 Day 3 Day 4 Day 5

0.6

0.8

1.0

N
o
rm

a
li
ze

d
P
o
w
e
r

(c) Normalized Daily Power Consumption

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

1.0

2.0

3.0

4.0

N
o
rm

a
li
ze

d
L
a
te
n
cy

(d) Normalized Daily Latency

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

N
o
rm

a
li
ze

d
C
a
rb

o
n

F
o
o
tp

ri
n
t

(e) Normalized Daily Total Carbon Footprint

Day 1 Day 2 Day 3 Day 4 Day 5
0.0

0.5

1.0

1.5

N
o
rm

a
li
ze

d
C
D
P

(f) Normalized Daily Carbon Delay Product (CDP)

1

Fig. 7: Normalized comparative analysis of Ecomap during
Week-3. For all comparison charts, lower is better.

emissions are correlated with energy consumption (power ×
latency), they are not directly proportional due to carbon inten-
sity (CI) fluctuations which is EcoMap’s fundamental control
variable. For example, on day 1 of week 1, EcomapR used
12.9% less energy between 10 AM -11 AM than between 11
AM-12 PM, yet produced 6.4% more carbon emissions during
the earlier period due to a 22% higher carbon intensity. In
our experiments, since CI is updated at hourly granularity, the
daily emissions reported in Figures 5-7 aggregate the hourly
variations and smooth out these differences.

B. Mixed-Quality Models Analysis

Mixed-quality models allow Ecomap to adapt to varying
latency requirements by replacing high-quality DNNs with
lighter alternatives whenever latency constraints are violated.
The analysis for Week-1 (Figure 8) reveals distinct trends in
how EcomapR and EcomapS utilize mixed-quality models. In
general, EcomapR relies more heavily on default models com-
pared to EcomapS , which frequently switches to lighter models

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Day 1

Day 2

Day 3

Day 4

Day 5

39% 25% 36%

20% 38% 42%

41% 34% 25%

23% 35% 42%

64% 21% 15%

44% 32% 24%

83% 17%

43% 43% 14%

64% 23% 13%

41% 36% 23%

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

QoS Distribution by Day QoS Distribution
Weekly Summary

58%

24%
18%

Ecomap R

33%

37%

30%

Ecomap S

Level 1 Level 2 Level 3

1

Fig. 8: Mixed-quality model usage by Ecomap in Week-1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Day 1

Day 2

Day 3

Day 4

Day 5

72% 28%

19% 27% 54%

57% 15% 28%

34% 34% 32%

67% 24% 9%

74% 13% 13%

73% 27%

42% 14% 44%

68% 19% 13%

32% 44% 24%

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

QoS Distribution by Day QoS Distribution
Weekly Summary

67%

23%

10%

Ecomap R

40%

26%

34%

Ecomap S

Level 1 Level 2 Level 3

1

Fig. 9: Mixed-quality model usage by Ecomap in Week-2

to meet its stricter constraints. Over the week, EcomapR
processes an average of 58% of tasks with default models, while
EcomapS only achieves 33%, reflecting the additional adap-
tations required under tighter latency thresholds. EcomapS
demonstrates a higher reliance on lightweight models, with
default models used the least on Day 1, accounting for only
20% of tasks. The analysis for Week-2 (Figure 9) also shows
consistent model utilization behavior of Ecomap. EcomapR
utilized default (level-1) models for a significant portion of
tasks (averaging 67%), whereas EcomapS relies more heavily
on lightweight alternatives, with 40% of tasks processed using
level-1 models, demonstrating the strict constraints.

In Week-3 (Figure 10), with a medium workload intensity,
there is a noticeable increase in the use of level-1 models for
EcomapS , averaging 43% across the week compared to 33% in
Week-1. This shift indicates that the reduced workload intensity
allows EcomapS to accommodate more tasks with default
models while still adhering to its strict latency constraints.
The increased use of level-1 models in Week-3 demonstrates
how Ecomap efficiently balances workload demands and la-
tency requirements while minimizing the need for lightweight
alternatives under less intensive conditions.

In addition to showing that EcomapR utilizes higher-quality
models more frequently than EcomapS , Figures 8-10 reveal a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Day 1

Day 2

Day 3

Day 4

Day 5

54% 26% 20%

13% 47% 40%

72% 28%

57% 25% 18%

60% 26% 14%

63% 37%

61% 34% 5%

41% 47% 12%

61% 36% 3%

41% 56% 3%

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

Ecomap R

Ecomap S

QoS Distribution by Day QoS Distribution
Weekly Summary

62%

30%

8%

Ecomap R

43%

42%
15%

Ecomap S

Level 1 Level 2 Level 3

1

Fig. 10: Mixed-quality model usage by Ecomap in Week-3.

12

deeper insight into how model selection is influenced by the
interplay between CI dynamics and workload complexity. For
example, in Week 1, CI fluctuates heavily on day 1, while
it remains relatively stable on day 2. This is reflected in the
QoS distribution: higher-level models are used more on day 2
compared to day 1. This suggests that CI variation, and not
absolute CI, is a stronger driver of model selection decisions.

C. Estimator Overhead

In our experiments, both EcomapR and EcomapS spent
an average of 13 minutes per day on MCTS-based exploration
and mapping evaluations, with each MCTS session taking about
30 seconds. This accounts for less than 1% of the total daily
runtime. Due to the lightweight design of our estimator, the
power consumption during exploration is minimal compared
to the inference workload, resulting in negligible impact on
runtime performance or energy usage. On average, the power
budget was updated 3 times per day, with observed variations
ranging from 2 to 5 changes. Similarly, operational mode
changes occurred 5 times per day on average, ranging from
1 to 10. These values indicate that Ecomap adapts effectively
to variations in workload and carbon intensity, while keeping
reconfiguration frequency moderate and manageable.

VI. CONCLUSION

This paper introduces Ecomap, a sustainability-focused
framework for managing multi-DNN workloads on edge
devices. Unlike conventional methods that prioritize either
throughput or power, Ecomap dynamically adjusts power
thresholds based on carbon intensity (CI), balancing low
latency and reduced emissions. Experiments show Ecomap
outperforms existing methods in minimizing emissions and
optimizing the carbon delay product under varying workloads
and CI levels. While matching others in power efficiency,
Ecomap excels in sustainability by adapting to real-time CI ,
maintaining latency, and using mixed-quality models.

ACKNOWLEDGMENTS

This work is supported by grant NSF CCF 2324854.

REFERENCES

[1] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. Aga, J. Huang, C. Bai et al., “Sustainable ai: Environmental
implications, challenges and opportunities,” Proceedings of Machine
Learning and Systems, vol. 4, pp. 795–813, 2022.

[2] A. M. Panteleaki and I. Anagnostopoulos, “Carbon-aware design of dnn
accelerators: Bridging performance and sustainability,” in 2024 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2024,
pp. 515–520.

[3] H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopoulos, and
J. Henkel, “Npu thermal management,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
3842–3855, 2020.

[4] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks,
and C.-J. Wu, “Act: Designing sustainable computer systems with an
architectural carbon modeling tool,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 784–799.

[5] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei,
D. Brooks, and C.-J. Wu, “Chasing carbon: The elusive environmental
footprint of computing,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 854–867.

[6] Y. G. Kim, U. Gupta, A. McCrabb, Y. Son, V. Bertacco, D. Brooks, and
C.-J. Wu, “Greenscale: Carbon-aware systems for edge computing,” arXiv
preprint arXiv:2304.00404, 2023.

[7] I. Dagli and M. E. Belviranli, “Shared memory-contention-aware con-
current dnn execution for diversely heterogeneous system-on-chips,” in
Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, 2024, pp. 243–256.

[8] A. Karatzas and I. Anagnostopoulos, “Omniboost: Boosting throughput
of heterogeneous embedded devices under multi-dnn workload,” in 2023
60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023.

[9] A. Karatzas, D. Stamoulis, and I. Anagnostopoulos, “Rankmap: Priority-
aware multi-dnn manager for heterogeneous embedded devices,” in 2025
Design, Automation & Test in Europe Conference (DATE). IEEE, 2025,
pp. 1–7.

[10] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha,
J. Liu, and D. Marculescu, “Single-path nas: Designing hardware-efficient
convnets in less than 4 hours,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2019, pp.
481–497.

[11] B. Li, S. Samsi, V. Gadepally, and D. Tiwari, “Clover: Toward sustainable
ai with carbon-aware machine learning inference service,” in Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2023, pp. 1–15.

[12] C.-Y. Hsieh, A. A. Sani, and N. Dutt, “The case for exploiting underuti-
lized resources in heterogeneous mobile architectures,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1265–1268.

[13] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big. little
multicore processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2254–2267, 2019.

[14] M. Alhartomi, A. Salh, L. Audah, S. Alzahrani, and A. Alzahmi, “En-
hancing sustainable edge computing offloading via renewable prediction
for energy harvesting,” IEEE Access, 2024.

[15] T. Zhou, J. Zhao, Y. Luo, X. Xie, W. Wen, C. Ding, and X. Xu,
“Adapi: Facilitating dnn model adaptivity for efficient private inference
in edge computing,” in Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, 2024, pp. 1–9.

[16] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 940–953.

[17] C. Lim and M. Kim, “Odmdef: on-device multi-dnn execution framework
utilizing adaptive layer-allocation on general purpose cores and acceler-
ators,” IEEE Access, vol. 9, pp. 85 403–85 417, 2021.

[18] D. Liu, S.-G. Yang, Z. He, M. Zhao, and W. Liu, “Cartad: Compiler-
assisted reinforcement learning for thermal-aware task scheduling and
dvfs on multicores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 6, pp. 1813–1826, 2021.

[19] E. Aghapour, D. Sapra, A. Pimentel, and A. Pathania, “Arm-co-up: Arm
co operative u tilization of p rocessors,” ACM Transactions on Design
Automation of Electronic Systems, 2024.

[20] A. Karatzas and I. Anagnostopoulos, “Mapformer: Attention-based multi-
dnn manager for throughout & power co-optimization on embedded
devices,” in 2024 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2024.

[21] X. Wang, W. Fei, W. Dai, C. Li, J. Zou, and H. Xiong, “Mixed-precision
deep neural network quantization with multiple compression rates,” in
2023 Data Compression Conference (DCC). IEEE, 2023, pp. 371–371.

[22] B. A. Motetti, M. Risso, A. Burrello, E. Macii, M. Poncino, and D. J.
Pagliari, “Joint pruning and channel-wise mixed-precision quantization
for efficient deep neural networks,” IEEE Transactions on Computers,
2024.

[23] K. Xu, X. Shao, Y. Tian, S. Yang, and X. Zhang, “Autompq: Automatic
mixed-precision neural network search via few-shot quantization adapter,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
2024.

[24] X. Zhao, R. Xu, Y. Gao, V. Verma, M. R. Stan, and X. Guo, “Edge-mpq:
Layer-wise mixed-precision quantization with tightly integrated versatile
inference units for edge computing,” IEEE Transactions on Computers,
2024.

13

[25] O. Spantidi, G. Zervakis, S. Alsalamin, I. Roman-Ballesteros, J. Henkel,
H. Amrouch, and I. Anagnostopoulos, “Targeting dnn inference via
efficient utilization of heterogeneous precision dnn accelerators,” IEEE
Transactions on Emerging Topics in Computing, vol. 11, no. 1, pp. 112–
125, 2022.

[26] K. Sankaranarayanan, R. B. Roy, and D. Tiwari, “Pulse: Using mixed-
quality models for reducing serverless keep-alive cost,” in SC24-W: Work-
shops of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2024, pp. 99–109.

[27] W. A. Hanafy, Q. Liang, N. Bashir, A. Souza, D. Irwin, and P. Shenoy,
“Going green for less green: Optimizing the cost of reducing cloud carbon
emissions,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, 2024, pp. 479–496.

[28] P. Wiesner, I. Behnke, D. Scheinert, K. Gontarska, and L. Thamsen, “Let’s
wait awhile: How temporal workload shifting can reduce carbon emis-
sions in the cloud,” in Proceedings of the 22nd International Middleware
Conference, 2021, pp. 260–272.

[29] Y. Yang, Y. Chen, K. Li, and J. Huang, “Carbon-aware dynamic task of-
floading in noma-enabled mobile edge computing for iot,” IEEE Internet
of Things Journal, 2024.

[30] Z. Song, M. Xie, J. Luo, T. Gong, and W. Chen, “A carbon-aware
framework for energy-efficient data acquisition and task offloading in
sustainable aiot ecosystems,” IEEE Internet of Things Journal, 2024.

[31] H. Ke, W. Jin, and H. Wang, “Carboncp: Carbon-aware dnn partition-
ing with conformal prediction for sustainable edge intelligence,” arXiv
preprint arXiv:2404.16970, 2024.

[32] “Electricity maps: Live and forecasted electricity emissions data.”
[Online]. Available: https://app.electricitymaps.com/

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
Advances in neural information processing systems, vol. 26, 2013.

[34] M. Han, J. Hyun, S. Park, J. Park, and W. Baek, “Mosaic: Heterogeneity-
, communication-, and constraint-aware model slicing and execution for
accurate and efficient inference,” in 2019 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE,
2019, pp. 165–177.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[36] R. Hu and A. Singh, “Unit: Multimodal multitask learning with a unified
transformer,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1439–1449.

[37] L. Wang, R. Fonseca, and Y. Tian, “Learning search space partition
for black-box optimization using monte carlo tree search,” Advances in
Neural Information Processing Systems, vol. 33, pp. 19 511–19 522, 2020.

[38] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
carlo tree search: A review of recent modifications and applications,”
Artificial Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[39] D. Maji, P. Shenoy, and R. K. Sitaraman, “Carboncast: multi-day fore-
casting of grid carbon intensity,” in Proceedings of the 9th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 2022, pp. 198–207.

[40] G. J. Miller, K. Novan, and A. Jenn, “Hourly accounting of carbon
emissions from electricity consumption,” Environmental Research Letters,
vol. 17, no. 4, p. 044073, 2022.

[41] A. Al-Dhamari, R. Sudirman, and N. H. Mahmood, “Transfer deep
learning along with binary support vector machine for abnormal behavior
detection,” Ieee Access, vol. 8, pp. 61 085–61 095, 2020.

[42] W. Hayale, P. S. Negi, and M. H. Mahoor, “Deep siamese neural networks
for facial expression recognition in the wild,” IEEE Transactions on
Affective Computing, vol. 14, no. 2, pp. 1148–1158, 2021.

[43] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms,” in Proceed-
ings of the 26th Symposium on Operating Systems Principles, 2017, pp.
153–167.

Varatheepan Paramanayakam received the Bache-
lor of Science of Engineering degree from the Depart-
ment of Electronic and Telecommunication Engineer-
ing, University of Moratuwa, Sri Lanka, in 2021. He
is currently pursuing the Doctor of Philosophy degree
at the School of Electrical, Computer and Biomedical
Engineering at Southern Illinois University, Carbon-
dale, Illinois, as a member of the Embedded Systems
Software Laboratory. His research interests include
embedded systems, sustainable AI, and deep learning.

Andreas Karatzas received the Integrated Master
degree (Diploma) from the department of Computer
Engineering and Informatics (CEID), University of
Patras, Patras, Greece, in 2021. He is currently pur-
suing the Ph.D. degree at the School of Electrical,
Computer and Biomedical Engineering at Southern
Illinois University, Carbondale, Illinois, as a mem-
ber of the Embedded Systems Software Lab. His
research interests include embedded systems, approx-
imate computing, and deep learning.

Dimitrios Stamoulis is a Special Faculty member
in the Dept. of Electrical and Computer Engineering
(ECE) at The University of Texas at Austin, Austin,
TX. Previously, he founded and led the CoStrategist
R&D Group at Microsoft Mixed Reality. He received
his PhD in ECE from Carnegie Mellon University,
where he specialized on hardware-aware AutoML. He
also holds a MEng in ECE from McGill University
and a Diploma in ECE from the National Technical
University of Athens.

Iraklis Anagnostopoulos is an Associate Professor
at the School of Electrical, Computer and Biomedical
Engineering at Southern Illinois University, Carbon-
dale. He is the director of the Embedded Systems
Software Lab, which works on run-time resource
management of modern and heterogeneous embedded
many-core architectures. He received his Ph.D. in the
Microprocessors and Digital Systems Laboratory of
National Technical University of Athens. His research
interests lie in the area of machine learning and
heterogeneous hardware accelerators.

https://app.electricitymaps.com/

	Introduction
	Related Work
	Background
	Operational Emissions and Carbon Intensity
	Temporal and Spatial Variability of Carbon Intensity
	Carbon Footprint

	Methodology
	Operating Modes
	Latency and Power Estimator
	LA-MCTS Module
	Runtime
	Enabling Mixed-Quality Models

	Experimental Evaluation
	Sustainability-Oriented Comparison
	Mixed-Quality Models Analysis
	Estimator Overhead

	Conclusion
	References
	Biographies
	Varatheepan Paramanayakam
	Andreas Karatzas
	Dimitrios Stamoulis
	Iraklis Anagnostopoulos

