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Elastic collision of two balls on a line is discussed in terms of their configuration space. The
optical-mechanical analogy is analyzed in this context. In particular, the law of collision is
reinterpreted as Heron’s law of light reflection. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

One of the standard tricks used in describing physical s
tems is construction of aconfiguration space. By definition,
a point in a configuration space corresponds to a configu
tion of the system. The basic example concerns the ma
body problem:k particles inR3 may equivalently be repre
sented by one ‘‘particle’’ inR3n. HereR3 is a model of the
‘‘visual space,’’R3n is the ‘‘configuration space.’’ Thus the
low dimensionality of the visual space is traded for simpl
ity ~one point!!.

In the following, we give a geometric description of th
elastic collision of two particles on a line. Despite its sim
plicity, this example illustrates the idea of ‘‘dimension
blow-up,’’ provides an interesting example of an optica
mechanical analogy, and illustrates the role of Euclidean
ometry in classical mechanics.

A matrix approach to analysis of elastic collisions w
introduced by Romer,1 and was employed later for relate
problems.2,3 Other aspects of geometry of elastic collisio
are also investigated in Refs. 4–6.

II. ELASTIC COLLISION

Consider two particles on a lineR. The configuration
space is a two-dimensional planeR2. If xA and xB denote
positions of the first and second particles, then, inR2, the
pair (xA ,xB) stands for the single point~say, abiparticle!
that represents the system. Since particles cannot occup
same position at the same time, the diagonal setD
5$(xA ,xB)uxA5xB% must be excluded from the configura
tion space.

We shall see that theelastic collisionof two particles inR
corresponds toreflectionfrom the setD in R2. Indeed, if two
particles have the same mass, a collision is just an excha
of velocities~see Fig. 1!. That is to say, ifvA andvB are the
initial velocities onR, then the after-collision velocities ar
wA5vB andwB5vA . In the configuration spaceR2, this can
be viewed as a reflection of a velocity vectorv5(vA ,vB)
from the ‘‘mirror’’ D with resulting vectorw5(wA ,wB).
This reflection of velocity is a linear transformationTv
5w, that in coordinates translates into:7

FwA

wB
G5F0 1

1 0G FvA

vB
G . ~2.1!

As a motivational exercise, the reader is asked to inter
the events shown in Fig. 2.

According to thelaw of anglesfor reflection of light in a
mirror, the angle of incidence equals the angle of reflecti
It is interesting that in the construction of configuration spa
described above, a law of optics seems to replace law
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mechanics. One may ask how far this analogy goes. In
ticular, if the masses of the particles differ, is the optic
analogy still valid for elastic collision?

Remark:It was Heron of Alexandria who in the first cen
tury derived the ‘‘law of angles’’ from the minimum
principle—the position of the point of reflection from a mi
ror minimizes the length of the light path from the source
the point of arrival~his proof is purely geometrical!. This
historical fact is well-known among mathematicians8 but is
hardly acknowledged within the lore of the history
physics,9 despite the fact that it has served Fermat as
motivation for his ‘‘minimum principle’’ for optics, which
later led to Maupertuis’ principle,10 Hamilton’s method of
characteristics, etc., becoming the source and the proto
of the variational calculus in physics.

In the following, the law of equal angles for mirrors wi
be addressed simply asHeron’s law.

III. COLLISION MATRIX

Throughout this section we use the following notation:

Particle A Particle B

Mass mA mB

Initial velocity vA vB

Final velocity wA wB

We know that, given masses and initial velocities, the fi
velocities after an elastic collision are determined by
laws of energy and of momentum conservation. In our c
of a one-dimensional system, from

~i! energy conservation:mAvA
21mBvB

25mAwA
21mBwB

2,
~3.1!

~ii ! momentum conservation:mAvA1mBvB

5mAwA1mBwB

one gets the result:

wA5
~mA2mB!vA12mBvB

mA1mB
,

~3.2!

wB5
~mB2mA!vB12mAvA

mA1mB
.

Notice that this is a linear transformation and can be writ
in matrix form ~cf. Ref. 1!

FwA

wB
G5 1

mA1mB
FmA2mB 2mB

2mA mB2mA
G FvA

vB
G ,

where
516© 1999 American Association of Physics Teachers
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T5F mA2mB

mA1mB

2mB

mA1mB

2mA

mA1mB

mB2mA

mA1mB

G ~3.3!

will be called thecollision matrix. Notice thatT assumes the
form of ~2.1! if the masses are equal.

Although ~3.1! involves quadratic equations, one can d
rive ~3.2! without leaving the domain of linear algebra. W
start by introducing the following:

Law 1: ~Law of averaging velocities! Elastic collision of
two balls makes their average velocities equal:

vA1wA5vB1wB . ~3.4!

Proof: Rewrite the law of energy conservation~3.1i! in a
form of square differences:

mAvA
22mAwA

25mBwB
22mBvB

2.

This may be expressed in terms of products

mA~vA2wA!~vA1wA!5mB~wB2vB!~vB1wB!.

In the general case, one may cancel out the law of mom
tum conservation~3.1ii! ~also in the form of differences! and
get ~3.4!. If vA2wA50 ~and consequentlyvB2wB50),
then such a cancellation is invalid. However, in this ca
collision cannot occur: Indeed,vA5wA and vB5wB imply
that the trajectory forms a straight line, which must be p

Fig. 1. A two-particle system on a line~A! as a single particle in a plane~B!.

Fig. 2. Heron’s law of elastic collisions.
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allel to D @see Fig. 2# to avoid passing through it. But the
vA5wA5vB5wB holds all the time, and~3.4! is trivially
satisfied. h

Now, a derivation of the formula for elastic collision~3.2!
becomes painless. Let us first restate it in matrix form.

Law 2: ~Elastic collision! If vectors v5(vA ,vB) and w
5(wA ,wB) represent velocities of two particles inR before
and after collision, respectively, then

w5Tv, ~3.5!

where the matrixT is

T5F mA2mB

mA1mB

2mB

mA1mB

2mA

mA1mB

mB2mA

mA1mB

G .

Proof: The law of averaging velocities~3.4! reduces the
problem to a system of two linear equations that may
solved almost instantly. Indeed, recall

velocity averaging:wA2wB5vA2vB ,

momentum conservation:mAvA1mBvB5mAwA1mBwB ,

which may be written in matrix form:

F 1 21

mA mB
G FwA

wB
G5F21 1

mA mB
G FvA

vB
G .

Since the left-hand-side matrix is nonsingular, one can w

FwA

wB
G5F 1 21

mA mB
G21F21 1

mA mB
G FvA

vB
G .

Thus the collision matrix is

T5F 1 21

mA mB
G21F21 1

mA mB
G

5
1

mA1mB
F mB 1

2mA 1GF21 1

mA mB
G

5
1

mA1mB
FmA2mB 2mB

2mA mB2mA
G

which ends the proof. h
Remark 1:Notice that if one of the masses is negligibl

saymA50, then the collision matrix does not depend on t
other mass and is

T5F21 2

0 1G .
Thus, simplywB5vB ~the heavy particle is not affected b
the collision!, while wA52vA12vB ~the velocity of the
light particle is inverted in the reference system of the hea
particle!.

Remark 2:Notice that the triple of laws~3.1i,ii! and~3.4!,
i.e., energy conservation, momentum conservation, and
locity averaging, form a system in which any two laws d
termine the third one. One may imagine a civilization
which Law 1 is the fundamental law of mechanics and o
viates the need for the law of momentum conservation~or
517Jerzy Kocik
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maybe energy conservation! among fundamental principles
What would the science of mechanics, and conseque
physics, look like?

Corollary 1: The collision matrix satisfies

T+T5I , detT521 TrT50, ~3.6!

whereI stands for identity matrix, andT represents reflection
in R2. ~Note that reflection is not necessarily anorthogonal
operator!.

Exercise 1:Find the eigenvalues and eigenvectors ofT.
Determine a geometric method to findw, givenv and masses
mA andmB .

IV. HERON’S LAW FOR ELASTIC COLLISION

What happened to the simplicity of Eq.~2.1!? Is the col-
lision matrix T still a ‘‘mirror reflection’’ from the diagonal
in R2?

It is easy to find that the eigenvectors ofT are

D5F11G , N5F mB

2mA
G ~4.1!

with eigenvalues 1 and21, respectively. The vectorD de-
termines the orientation of the mirrorD. ~If the biparticle
slides along the mirror, no actual reflection, i.e., change
the velocity, occurs!. The other eigenvector,N, with eigen-
value21, indicates that a system with initial velocity para
lel to N will be reflected fromD with exactly the opposite
velocity. But N does not appear to be orthogonal toD, so
Heron’s law seems to be violated for nonequal mass
Unless . . .

Definition: Define a metric tensor inR2 by

g5FmA 0

0 mB
G . ~4.2!

In terms of coordinates, (a,b)5mAaAbA1mBaBbB replaces
the standard producta–b.

Corollary 2: The reflection matrixT is orthogonal with
respect to the metricg.

Proof: An easy calculation shows thatTTgT5g, which is
the condition for orthogonality ofT. h

Thus Heron’s law for elastic collisions is satisfied in t
general case,if the proper Euclidean structure, that of~4.2!,
is recognized!@Matrix ~4.2! of the metric appears in Romer’
analysis1 as a transformation to ‘‘u space’’#. However, the
form of Corollary 2 may be found to be too abstract—let
see Heron’s law more directly. First, notice that the eig
vectors ofT are mutually orthogonal,D'N:

~D,N!5S F11G ,F mB

2mA
G D5mAmB2mbmA50. ~4.3!

To ensure thatT obeys Heron’s law, we need to look mo
closely at the geometry of the event of reflection:~i! that the
final velocity w has the same length as the initial velocityv
~measured in terms ofg!; ~ii ! that the component of velocity
parallel to the mirrorD is preserved during the collision; a
well as ~iii ! that the normal part ofv is opposite to the nor-
mal part ofw. Briefly:

~ i! uvu5uwu, ~ ii ! vi5wi , ~ iii ! v'52w' ~4.4!

~see Fig. 3!. These geometric requirements will clearly e
sure that the angle of incidencea equals the angle of reflec
tion b. But there is more than that. These three conditions
518 Am. J. Phys., Vol. 67, No. 6, June 1999
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associated with three images: the mechanics of collision
two masses, the geometry of ricochet of one point off a w
and the optics of reflection of a ray from a mirror. The thr
laws of mechanics translate into the trigonometry of refl
tion, and into Heron’s law of optics.

~1! The scalar product~4.2! has the meaning of kinetic
energy of the system. In particular, the law of energy co
servation~3.1i! translates into

~v,v!5~w,w!. ~4.5!

Geometrically, this means that the length of incident a
reflected vectors are equal in terms of metricg. In optics, this
means that the speed of the light ray before and after refl
tion is the same.

~2! Also, momentum conservation~3.1ii! has a simple
geometric meaning. It can be written in the scalar prod
form:

S v,F11G D5S w,F11G D . ~4.6!

This says that the tangent velocity, i.e., the compon
parallel to the mirror surfaceD, is conserved. Trigonometri
cally, this is Heron’s law in the form: sina5sinb. Thus the
law of momentum conservation can be interpreted as a
of optics: ‘‘the angle of an incident beam equals the angle
the reflected beam.’’

Fig. 3. The geometry of Heron’s law of collision.

Table I. Correspondence between the different representations of colli

Mechanics
Two particles inR

Geometry
One particle inR2

Optics
Ray in R2

Collision Ricochet Reflection
masses metric tensor transparency
Energy conserved (v,v)5(w,w) speed preserved
Momentum conserved (v,D)5(w,D) Heron’s law

(sina5sinb)
Velocities averaged (v,N)52(w,N) Heron’s law

(cosa5cosb)
‘‘perfect collision’’ eigenvectors mirror orientation
518Jerzy Kocik
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~3! The law of averaging velocities is geometrically du
to that of momentum conservation. Indeed, it can be writ
as

S v,F mB

2mA
G D52S w,F mB

2mA
G D . ~4.7!

But this is requirement~4.4iii!! The trigonometric version
of ~4.7! is cosa5cosb, which is just another form of Her-
on’s law.

A table of correspondence between these three pictu
can thus be created~see Table I!. The ‘‘perfect collision’’ in
the first column denotes a situation when the particles~or
balls! leave the collision preserving their original spee
~with the same or inverted velocities!.

Solution to Exercise 1:Here is a simple geometric con
struction of the final velocityw given the initial velocityv
and massesmA andmB ~see Fig. 4!.

~1! As an initial exercise, draw inR2 an ellipse that has the
main axes along the coordinate axes, with points of inters
tion 6mA

1/2 alongx and6mB
21/2 alongy. This ellipse repre-

sents a unit circle with respect to the metricg. In the optical
interpretation, it determines points that would be reached
light propagating from a point~0! in a unit time.

~2! At the collision point ofR2, where the incomingbi-
particle strikes the mirrorD, draw an ellipse of all vectors o

Fig. 4. Geometric construction of the result of collision.
519 Am. J. Phys., Vol. 67, No. 6, June 1999
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length~in the sense of the metricg! of the incoming vectorv.
This ellipse is similar~rescaled and shifted! to the prototype
ellipse drawn at 0.

~3! Determine a line tangent to the ellipse through the e
point of vector v. Then, draw a parallel line through th
center of ellipse.

~4! The vector spanned along this line from the ellip
center to the intersection with the ellipse is the postcollis
velocity vectorw.

Note that by appropriately rescaling the axes in Fig. 4,
x→x85xAmA /mB, the ellipse can be transformed into
circle. Then the visual representation of the general case
incides with the equal-mass case, i.e., the incidence and
flection axeslook equal, except the diagonal setD is skewed,
i.e., is nowx8AmB5yAmA.

Notice that the ellipse in the construction in Fig. 4 can
viewed as indicatrix for light propagation.11
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SIMPLIFICATION

Classical science...works because it simplifies. It takes on only those problems that can be
solved by the known method. The entire scientific edifice, for all its hermetic inaccessibility to the
uninitiated, is a vast monument to simplification.

Bryan Appleyard,Understanding the Present—Science and the Soul of Modern Man~Pan Books, London, 1992!, p. 150.
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