Disentangling a triangle

American Mathematical Monthly, 116 (3), March 2009, pp 228-237

Jerzy Kocik and Andrzej Solecki

Additional problems and hints

i. The formulas derived hold for obtuse triangle as well.

[Hint: Take $\triangle RST$ with excircle of diameter 1 and corresponding angles ρ, σ, τ . Assume that $\sigma \geq \pi/2$. Look at Figures 5 and 6: rename $\triangle RST$ as $\triangle A\bar{C}B$. Note that $\rho = \frac{\pi}{2} - \beta$, $\sigma = \alpha + \beta$, $\tau = \frac{\pi}{2} - \alpha$. Using reduction formulas for sine and cosine, establish the validity of all the formulas received so far for $\triangle RST$.]

- ii. The area of a triangle is $(ABC) = \frac{1}{2} \sin \alpha \sin \beta \sin \gamma$.
- iii. $4\sin\alpha\sin\beta\sin\gamma < \pi$.

[Hint: Two copies of $\triangle ABC$, the triangle itself and its three parts, each of them with vertex in H, do not fill the circumcircle of radius $\frac{1}{2}$.]

iv. The power of H in the circumcircle of $\triangle ABC$ (product of any two parts of a chord passing through the point) is $2 \cos \alpha \cos \beta \cos \gamma$.

[Hint: Take the product of length of the ear and the sum lengths of the stalk and the root.]

- v. Distance of the antipodal point of C from AB equals to the root h_C . [Hint: Segments \overline{CD} and AB in Figure 11 are parallel.]
- vi. The circle inscribed in the orthic triangle has radius $\cos A \cos B \cos C$ and center H.

[Hint: By Proposition 8 (iii), H is the center of the incircle of $\triangle A_F B_F C_F$. Thus the distance from H to the side $A_F C_F$ is the root of the altitude from B in the triangle $A_F B C_F$, so it is $\cos \alpha \cos \gamma$ scaled by the factor $\cos \beta$, see Figure 10.]

vii. Orthocenters of $\triangle AC_F B_F$, $\triangle BA_F C_F$ and $\triangle CB_F A_F$ lie on sides of the circumorthic triangle.

[Hint: The distance between H and $A_F B_F$ is the same as between the parallel sides $A_F B_F$ and $\overline{A}\overline{B}$. It is the length of root of the altitude from C in $\triangle A_F B_F C$.]

viii. The distance u = |OH| satisfies $u^2 = 1/4 - 2 \cos \alpha \cos \beta \cos \gamma$. [Hint: Take the chord through H and O. One of its segments measures 1/2+u, the other 1/2 - u.]

- ix. For $\alpha + \beta + \gamma = \pi$ one has $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma = 1$. [Hint: In $\triangle ABH$ obtain $\sin \gamma$, length of AB, using the theorem of cosines; two other sides measure $\cos \alpha$ and $\cos \beta$ and form the angle $\pi - \gamma$.]
- x. The heights of a triangle obey the inequality

$$\frac{1}{|h_A|} + \frac{1}{|h_B|} > \frac{1}{|h_C|} \,.$$

[Hint: Divide the triangular inequality $\sin \alpha + \sin \beta > \sin \gamma$ by the product of the sines.]

xi. The inradius r of $\triangle ABC$ satisfies

$$\frac{1}{r} = \frac{1}{|h_A|} + \frac{1}{|h_B|} + \frac{1}{|h_C|}$$

[Hint: Use the relation $r(\sin \alpha + \sin \beta + \sin \gamma) = \sin \alpha \sin \beta \sin \gamma$.]

xii. The centers of circumcircles of $\triangle ABH$, $\triangle BCH$, $\triangle CAH$ form the triangle $O_{AB}O_{BC}O_{CA}$ congruent to the triangle ABC and they are interchanged by the half-turn around N.

[Hint: The distance from O to the side AB is $\frac{1}{2}|HC|$, see the proof of Proposition 12. Thus, the reflection of O in AB yields O_{AB} such that $OO_{AB}||HC$ and $|OO_{AB}| = |HC|$; in the new triangle O becomes the orthocenter.]