3. The zero-based linearity line extends in both directions from the point where $i_N = 0$ mA and $R_s = 120 \Omega$. The line is positioned such that it is an equal distance from i_N at each extremity. We will use L_N for the y-coordinate of the zero-based line. The magnitude of L_N at each extremity is determined by averaging the magnitude of i_N at each extremity.

When
$$R_s = 140$$
, $L_N = (17.544 + 18.182)/2 = 17.863$ mA
When $R_s = 100$, $L_N = -17.863$ mA

The equation of the zero-based linearity line is determined by the following two points:

$$R_s = 120 \ \Omega$$
 $L_N = 0.0 \ \text{mA}$
 $R_s = 140 \ \Omega$ $L_N = 17.863 \ \text{mA}$

Zero-based linearity line $L_N = 0.89315R_s - 107.178$

The values of L_N , $L_N - i_N$, and the percentage of difference are in the last three columns of the table below.

T (°C)	$R_s(\Omega)$	i_N (mA)	L _N (mA)	L_N-i_N	% Diff
0	100	-18.182	-17.863	0.319	0.89
25	110	-9.009	-8.931	0.078	0.22
50	120	0.000	0.000	0.000	0.00
75	130	8.850	8.931	0.081	0.23
100	140	17.544	17.863	0.319	0.89

lacktriangle Figure 6.17 Unbalanced Wheatstone bridge and instrumentation amplifier circuit. The purpose of the circuit is to produce an output voltage that is proportional to the difference between R_3 and $R_{\rm bal}$.