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EET 438B 

Sequential Control and Data Acquisition 

Laboratory 7 

PLC Function Programming Using Ladder Logic 

 

 

Laboratory Learning Objectives 

1.) Explain the operation of on and off delay timers used in ladder logic and use them in 

programming exercises 

2.) Explain the operation of up/down counters used in ladder logic programs and use them in 

programming exercises. 

3.) Define operating states of a given physical system 

4.) Write Boolean state equations for a physical system and use them to program ladder logic. 

 

Technical Background 

Programmable Logic Controllers have other uses along with the implementation of ladder logic 

in software.  Two of the most common functions are those of timing processes and counting 

events.  These functions replace the costly electromechanical and discrete electronic devices 

used to accomplish the tasks before the arrival of PLCs.  Time driven processes we see in the 

home are automatic washing machines and clothes dryers.  A timing device controls a sequence 

of events in these processes moving the appliances from one operating state to another.  Boolean 

state equations provide an mathematical basis for describing time and event driven processes.  

Designs based on well thought out Boolean state equations produce control programs that are 

less likely to have logical errors and have clearer structures. 

 

Timer Functions 

 

On-delay and off-delay timers provide fundamental timing functions in sequential control 

systems.  Figure 1 shows the schematic symbols for electromechanical timer relays and contacts.  

Timer coils can have either two or three-wire representations and usually have labels that 

indicate the device is a timer (e.g. TR).  Contacts associated with the coil have the same 

identifier with a sequence number that indicate the linkage between the coil and the contacts  

(e.g. the coil TR controls  TR1, TR2, TR3).  Figure 1 also shows the contact symbols associated 

both the on and off delay devices.   

 

On-delay timers must have their coils' energized before the timing sequence can start.  All 

contacts associated with the coils change state after a predetermined time interval.  Off-delay 

timers maintain contact states when their coils' are energized but start the timing period AFTER 

the coil is de-energized.  All associate contacts will change states after the timers preset interval 
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when the coil is de-energized.  Electromechanical/Electronic timers were expensive.  PLCs 

implement both timing functions in electronic hardware and software at a fraction of the cost.  
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Figure 1. Electromechanical Timer Schematic Symbols. 

 

The Micro800 series PLCs have both on-delay and off-delay functions accessible from the Block 

menu choice in the ladder diagram programming palette of the toolbox in Connected 

Components Workbench.  Figure 2 shows the ladder diagram symbols for both the on and off 

delay timers.  The TON block provides the on-delay timing function while the TOF implements 

 

 
Figure 2.  TOF and TON Timer Functions in the Connected Components Workbench 

  Development Environment. 

 

the off-delay timer.  Timers must be the output of a rung.  The Boolean result of the rung 

conditions and the timer type determine the action of the outputs.  An off-delay timer begins its 

timing sequence when the timer input transitions from TRUE to FALSE.  If the input rung 

condition changes from FALSE to TRUE before the preset time delay ends, then the timer resets.   
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Table 1 shows the parameters of the TOF function.  The parameter IN takes the Boolean result of 

the rung evaluation into the timer.  A TRUE to FALSE transition on this input starts the timer.  

The time diagram in Figure 3 shows how the TOF function's I/O signals interact. 

 

Table-1 TOF-Off-Delay Timer Function Parameters 

Parameter Parameter Type Data Type Description 

IN Input Boolean T to F starts timer 

F to T stops and resets timer 

PT Input Time Programmed Time delay  

Format t#HHhMMmSSsMMms where HH is 

number of hours, MM is minutes, SS is 

seconds and MM is miliseconds. 

Q Output Boolean Timer output.  Stays TRUE while timer 

elapsed time value is less than PT value.  

Becomes FALSE when ET=PT. 

ET Output Time Displays current value of elapsed time when 

CCW is in debug mode.   

Parameter Range: 0ms - 1193h2m47s294ms  

    

IN

0
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Q
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Figure 3.  TOF Timing Diagram Showing the Sequence of Operation. 

 

Note that the output, Q remains high only while the timer function internal timer is less that the 

preset value defined by PT. 
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The on-delay timer function TON is the logical opposite of the TOF function.  Table 2 describes 

the actions of the function's parameters. This function delays its TRUE output until after the 

timer value reaches the preset value.  Figure 4 shows the timing diagram for the TON function. 

The TON function resets when the input parameter, IN, becomes FALSE before ET=PT 

 

Table-2  TON-On-Delay Timer Function Parameters 

Parameter Parameter Type Data Type Description 

IN Input Boolean F to T starts timer 

T to F stops and resets timer 

PT Input Time Programmed Time delay  

Format t#HHhMMmSSsMMms where HH is 

number of hours, MM is minutes, SS is 

seconds and MM is miliseconds. 

Q Output Boolean Timer output.  Stays FALE while timer elapsed 

time value is less than PT value.  Becomes 

TRUE when ET=PT. 

ET Output Time Displays current value of elapsed time when 

CCW is in debug mode.   

Parameter Range: 0ms - 1193h2m47s294ms  

    

.   
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Figure 4.  TON Function Timing Diagram Showing Timer Reset. 
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Figures 5a and 5b show rungs that include the TOF and TON functions.  The PT parameters 

must be set to a valid time value or an error occurs.  A yellow highlighted exclamation point 

 

 
 

Figure 5a.  On-delay Timer Application with a 3 Second Programmed Time Delay. 

 

 
 

Figure 5b.  Off-delay Timer Application with a 5 Second Programmed Time Delay. 

 

identifies timers with incorrect PT values.  Double clicking the local variable icon in the project 

pane brings up the timers defined in a ladder diagram program.  Expanding a timer shows the 

parameters associated with each timer. 

 

Figure 5a shows an on-delay timer activated when the digital input _IO_EM_DI_05 becomes 

TRUE.  If this input produces a TRUE for more than three seconds, the value of Q in timer one 

changes from FALSE to TRUE setting the underlying memory bit to a 1.  The direct contact in 

the next rung tests the variable TON_1.Q and returns a TRUE since the addressed bit is 1.  This 

causes the direct coil instruction at digital address _IO_EM_DO_06 to set its bit to 1 and 

energize the output point.  If the direct contact at _IO_EM_DI_05 becomes false before the PT 

time elapses, the timer resets and there is no change in output. 
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Figure 5b shows the operation of an off-delay timer.  This timer has a programmed time delay of 

5 seconds.  The TOF function actives when the input at address  _IO_EM_DI_06 becomes 

FALSE.  The TOF function starts timing and sets the output parameter TOF_1.Q to TRUE.  This 

output remains TRUE until the value of ET=PT.  If the input point at address  _IO_EM_DI_06 

changes from FALSE to TRUE before the elapsed time equals programmed time the output 

resets to FALSE.  The direct contact instruction in the next rung shown in Figure 5b tests the 

output variable of the TOF function.  When TOF_1.Q=TRUE its memory bit is set to 1, so the 

direct contact instruction returns a TRUE and the output addressed by the direct coil instruction 

is energized. 

 

The CCW programming environment includes several other timing functions.  The Mirco800 

Programmable Controllers General Instruction Manual (Rockwell Automation document number 

2080-rm001_-en-e.pdf) describes these instructions.  Download this reference from the learning 

management system or the course website for future use.  

 

Counter Functions 

 

Another common task implemented using a PLC system is to record the number of events that 

occur in a sequential system.  The counter functions of the PLC replace electromechanical 

counters in modern industrial control processes.  The Micro800 series of PLCs have three 

counter functions:  a count-down structure (CTD), a count-up structure (CTU), and a up-down 

structure (CTUD). These functions handle a variety of tasks found in sequential control design. 

 

Figure 6 shows the function blocks of the up, down and up/down counters used for ladder 

diagram programming. These functions are available from the Block menu choice in the ladder 

diagram programming palette of the toolbox in Connected Components Workbench.  These are 

output functions and should be located on the right side of a ladder diagram rung.   

 

 
Figure 6.  Counter Functions In The Mirco800 PLC . 



Spring 2015 7 Lab7_ET438b.docx 

Tables 3 through 5 list the functional parameters of each structure.  Table 3 shows the functional 

parameters of the CTD instruction.  The CTD has three input parameters.  The CD input 

decrements the programmed value of the counter by 1 each time the rung input  

 

Table-3  CTD- Count-Down Counter Function Parameters 

Parameter Parameter Type Data Type Description 

CD Input Boolean Decreases CV value by 1 when rung make a 

FALSE-to-TRUE transition 

LOAD Input Boolean Set CV=PV when TRUE 

Q Output Boolean Underflow flag:  TRUE when CV≤0 

PV Input D-Integer Programmed counter value 

CV Output D-Integer Current counter value 

 

transitions from FALSE to TRUE.  The LOAD input is a Boolean parameter that sets the current 

counter value parameter, CV equal to the programmed value, PV when it is TRUE.  This can be 

used to change the state of the output parameter, Q, before the programmed number of counts 

occurs and to reset the counter value to its PV value after the programmed count number occurs.  

The function’s outputs are CV, the current count value and Q.  The parameter Q indicates when 

CTD has registered the programmed number of counts.  If becomes TRUE when the current 

value parameter, CV reaches 0. 

 

Table 4 lists and defines the CTU function.  This counter function increments a value variable 

until it reaches a predefined value.  The PV parameter sets the maximum number of counts the  

 

Table-4  CTU- Count-Up Counter Function Parameters 

Parameter Parameter Type Data Type Description 

CU Input Boolean Increases CV value by 1 when rung make a 

FALSE-to-TRUE transition 

RESET Input Boolean Set CV=0 when TRUE 

Q Output Boolean Overflow flag:  TRUE when CV≥PV 

PV Input D-Integer Programmed maximum value 

CV Output D-Integer Current counter value 

 

function registers before it gives a TRUE output.  The PV and CV data types are double 

precision signed integers with a range of ±2,147,483,648 counts.  The RESET parameter sets 

CV=0 when it is TRUE.  This is similar to the LOAD parameter in the CTD function.  It can be 

used to reset the counter after the programmed number of counts occurs   The CTU output 

becomes TRUE after the CV value reaches the programmed value, PV. 
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Table 5 lists the parameters for the CTUD, the up/down counter function.  This structure 

combines the functions of the up and down counters into a single package.  This function has 

 

Table 5 CTUD- Count-Up/Down Counter Function Parameters 

Parameter Parameter Type Data Type Description 

CU Input Boolean Increases CV value by 1 when rung make a 

FALSE-to-TRUE transition 

CD Input Boolean Decreases CV value by 1 when rung make a 

FALSE-to-TRUE transition 

RESET Input Boolean Set CV=0 when TRUE 

LOAD Input Boolean Set CV=PV when TRUE 

QU Output Boolean Overflow flag:  TRUE when CV≥PV 

QD Output Boolean Underflow flag:  TRUE when CV≤0 

PV Input D-Integer Programmed maximum value 

CV Output D-Integer Current counter value 

 

two counter inputs, one that increments and another that decrements the current counter value.  

There are also two outputs to indicate if the counter has reached 0 or the programmed upper 

limit.  The RESET and LOAD inputs have the same function in this structure as they have in the 

CTU and CTD instructions described previously. 

 

Figures 7 shows the counter functions applied in rungs of ladder logic programming.  The CTD 

 

 
Figure 7.  Up and Down Counters in Ladder Logic. 
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instruction in rung 9 decrements the CV value each time the digital input _IO_EM_DI_11 makes 

a FALSE-to-TRUE transition.  The value of CV will increase with each transition.  The 

programmed value is 100, so the value of CTU_1.Q will remain FALSE until the CD input see 

100 transitions and the value of CV=0.  The LOAD parameter addresses the counter output 

value.   When the value of CTU_1.Q changes from FALSE to TRUE the LOAD parameter 

changes to TRUE and reloads the CV parameter with 100 and the counter can begin 

decrementing again from the PV value. 

 

The direct contact in rung 10 links to the CTD function in rung 9.  The direct contact addresses 

the Boolean output of the CTD function with the CTD_1.Q variable.  Each time the CTD counter 

function records 100 events the direct contact in rung 10 makes a FALSE-TRUE transition 

incrementing the parameter CTU_1.CV.  The output of this counter will remain FALSE until 

input _IO_EM_DI_11 senses 500 events because the CTU function must increment 5 times 

before its output changes.  Other program rungs can use CTU_1.Q to trigger events when it 

becomes true.  The value of CTU_1.CV is reset by an external input, _IO_EM_DI_06. 

 

Mirco800 Programmable Controllers General Instruction Manual gives examples of the use of 

the CTUD function.  Refer to this document for its use. 

 

Boolean State Equations and Sequential System Design 

 

Inspection and experience can provide solutions to simple sequential control problems but more 

complex system require structured methods.  Boolean state equations coupled with Boolean 

algebra and state diagrams form a set of analytic tools for tackling complex sequential control 

problems. The solutions found from using these methods are structured and produce PLC code 

that is easily followed and less likely to have logical errors.  A state-based design may not 

produce a minimal logic design if there are redundant states or the resulting Boolean equations 

are not reduced to minimal expressions.  

 

A Boolean state equation provides a formal way of expressing the conditions that cause a 

sequential system to enter and leave a given state. An informal statement of a state equation is 

 

State X = (Is currently in state  X + Just arrived from another state)∙(has not left to another state) 

 

This expression states that a system is in state X if it was already in state X or logical conditions 

cause it to enter state X at this time. The ANDed statements specify logical conditions that would 

cause the system to leave the current state. 
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A formal mathematical version of the state equation gives more specific definitions to the 

statement above.   Equation (1) shows the formal statement of a state equation.  Figure 8 is a 

graphic interpretation of the equation. 
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Where S
+

i = the next value of the state variable that describes state i 

 Si = the current value of the state variable i 

 T(in)ji = logical conditions that would cause process to enter state i from state j 

 T(out)ik = logical conditions that would cause the process to leave state i   

for state k  

 

State variables can take a Boolean value of 1 or 0 to indicate a sequential process is in a given 

state.   
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Figure 8. Graphical Representation of State Equation Showing Transitions into and out of Si. 
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The transition equations T(in)ji represent the conditions necessary to set the state variable while 

the T(out)ik equations are the conditions necessary to reset the state variable.  A state transition 

that depends solely on inputs is memoryless.  This indicates that the transition is event driven 

and does not require information from a previous state.  Equation 2 gives the form of a 

memoryless state equation. This form indicates  neither set or reset functions are state dependent  
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The output function relates the process states to the desired output actions.  The simplest form of 

the output function equates the state variable to the desired output action as shown in equation 

(3). 

 

 ii OS   (3)  

 

Developing a state diagram should be the first step in designing sequential systems that have any 

complexity.  The most critical step in developing a state diagram is identifying the states.  A 

designer should consider the system functionality.  This includes the following: 

 

  1.)  normal operating state 

  2.)  internal system behavior changes 

  3.)  external system behavior changes 

  4.)  system sequence of events 

 

After determining a sequence of events, list the modes of operation where the system is 

performing one identifiable activity that must be started or stopped.  It is possible that waiting for 

input is an activity, so the idle state is valid.   The designer should also determine what outputs, if 

any, entering or leaving a state requires. 

 

Example 

 

A mixing process requires automation in an industrial plant.  The process begins when an 

operator depresses a momentary contact start push button switch.  When the process starts a 

solenoid-controlled inlet valve opens and allows a mixture to fill a tank to a specified level.  A 

float-switch senses when the mixture reaches the correct level.  The mixture must be agitated for 

20 minutes and then a solenoid controlled outlet valve opens draining the contents into a holding 

tank for further processing.  The same float switch that detects a full tank senses the tank is 

empty.   After the tank drains, the system should be ready for another manual start.  For safety 

reasons, the stop push button should end the process at any point in the sequence.  The system 

should power up in the stop condition.  For this process: a.) define the inputs, the outputs, and the 
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states, b.) draw a state diagram, c.) write state equations that describe the system operation, d.) 

develop a PLC program that performs this control function.  

 

Solution 

 

a.) First define a nomenclature to use in the state diagram. 

 

  Sx = process state x , where x is 0, 1,2, 3, … n 

  Ix = process input x  

  Ox = process output x 

  TON(A,T) = on-delay timer function with input A and time setting T in seconds 

  TOF(A,T) = off-delay timer function with input A and time setting T in seconds 

 

Now define the inputs and outputs from the process description. 

 

  Inputs:  I0 = first PLC scan 

I1= start push button 

    I2= stop push button  

    I3=float switch 

   

  Outputs: O0=inlet solenoid valve 

    O1=outlet solenoid valve 

    O2=agitator motor contactor 

 

Define states for the process.  Note that states are not unique.  Two different designers may 

define the states differently but produce workable designs.  The goal should be to describe 

system operation using a minimum number of states.  Remember, each state will require a 

Boolean state equation. 

 

  States:  S0=stop 

    S1=start 

    S2=tank filling 

    S3= mixture agitating 

    S4=tank draining 

 

b.) The next step is to relate the inputs, outputs and states in a state diagram.  A state diagram is a 

directed graph of nodes defining the states and arrows defining the conditions that cause state 

transitions.  Arrows directed from the nodes that do not connect to another state indicate an 

output that occurs when entering or leaving the state.   
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Figure 9 shows the state diagram for the example process.  The diagram starts with an input from 

the first scan variable of the PLC.  This variable is TRUE only for the first PLC program scan 

and places the process in the stop state.  This guarantees that the process will be stopped even 

after a power outage.  From this point, the process progresses to the start state if the start push 

button is pressed.   Once in the start state, the process will transition to the tank filling state if the 

float switch indicates the tank is empty.  If the tank is empty, the control scheme opens the inlet 

value allowing the tank to fill with mixture.  The float switch detects a full tank and allows the 

process to move to the mixing state.  An output energizes the mixer motor after the process 

enters this state. The mixing state continues until 20 minutes have elapsed, after which the 

process enters into the tank draining state.   In this state, the drain value is opened and the state 

maintained until the float switch indicates the tank is empty.  Pressing the stop push button at 

each stage of the process ends the current operation and returns the system to the stop state.  
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Figure 9.  Example State Diagram Showing Transitions and Outputs 
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c.)  State equations convert the state diagram into Boolean expressions relating the inputs to 

states.  The first step in developing state equations is to determine the coding of the states.  

Individual bits can store the state variables.  A number of bits, n, can store up to 2
n
 states.  The 

number of states in this example is five so three bits can store all the defined states.  Table 6 

shows one way to code the states for this example.  A selected code should attempt to only 

 

Table-6  Coding of States In Example Problem 

X1 X2 X3 Diagramed State Identifier 

0 0 0 S0:  Stopped State 

0 0 1 S1:  Start State 

0 1 0 S2: Tank Filling 

0 1 1 S3: Mixing State 

1 1 1 S4:  Tank Draining 

 

change the value of single bit as the program transitions among the defined states.  This 

simplifies the transitional Boolean equations.  Another coding method assigns a single bit to each 

state.  Table 7 shows this coding.  This method does not take advantage of the fact the each bit 

can store two states and is quite wasteful of resources.  It is easier to understand since each bit 

 

 Table-7  Coding of States In Example Problem 

S0 S1 S2 S3 S4 Diagramed State Identifier 

1 0 0 0 0 S0:  Stopped State 

0 1 0 0 0 S1:  Start State 

0 0 1 0 0 S2: Tank Filling 

0 0 0 1 0 S3: Mixing State 

0 0 0 0 1 S4:  Tank Draining 

 

represents a condition of the system process and it is either in the state  (1) or out of the state (0).  

This example uses the coding from Table 7.  

 

Examining the state diagram and utilizing the general form of the state equations given in (1) and 

(2) produces the system of Booleans state equations show in equations 3a-3e. 

 

 

 

 

 

 

  2I3I3S)T,3S(TON4S4S                   .)e

2I)T,3S(TON2S3I3S3S                   .)d

3I2I1S3I2S2S                   .)c

3I2I0S1I1S1S                   b.)

2I4S3I2I0I0S0S                   a.)





















 (3) 
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These equations combine memoryless and retained state memory in their implementation.  The 

set conditions are enclosed in the square brackets and the reset conditions follow the terms 

enclosed in the brackets. 

 

Output equations relate the inputs and states to the desired output actions.  Using a single bit to 

indicate a state makes the output equations simple.  Equations (4) give the output relationships 

for the example. 

 

 

mixer)(Start       3S2O

drain)(Open       4S1O

inlet)(Open       2S0O







 (4) 

 

d.)  Converting the state equations to a PLC program requires the specification of the input and 

output points on the controller and the type of switch contact employed.  Table 8 lists the I/O 

points used in this example. 

 

Table-8  PLC I/O Point Assignments 

Inputs 

I1 Start (N.O. contact) DI_00 

I2 Stop  (N.C. contact) DI_02 

I3 Float Switch (N.C. contact) DI_03 

Outputs 

O0 Open Inlet DO_00 

O1 Mixer Motor Start DO_02 

O2 Open Outlet DO_01 

 

The state equations produce the rungs of the ladder program with some modifications.  The 

conditions of the specified external contacts (N.O.=normally open and N.C. normally closed) 

will control the logic.  A NOTed variable in the state equations my translate into a direct contact 

in the  PLC program.  The goal is to maintain the logical continuity of the rung not electrical 

continuity. 

 

The state equation structure assumes that they are computed simultaneously.  Remember that the 

PLC executes a program from top down and left to right so state equations are not updated in 

parallel.   Adding intermediate state variables allow state equations to  re-compute correctly.  

This example defines S0X, S1X, S2X, S3X, and S4X as the intermediate state variables.  The 

state variable updates should appear after all state equations in the ladder program structure. Any 

timers or counter that depend on state variable changes follow the updates.  The final section 

should be the output equations.  Figure 10 shows the Connected Components Workbench ladder 

diagram program file printout for this example.  This section is the ladder diagram for the five 



Spring 2015 16 Lab7_ET438b.docx 

state equations.  Logical OR functions in the state equations become parallel contacts in the 

ladder program while the AND functions become series contacts.  The outputs are the 

intermediate variables discussed above..  These are user defined bits in memory of a Boolean 

type. 

 

 
 

Figure 10.  PLC Ladder Diagram for Example State Equations. 

 

 

Figure 11 shows the section of ladder diagram program code that updates the state variables after 

their values are recomputed by the state equations shown above.  These are very simple 

statements in which a direct contact associated with the intermediate variable changes the bit 

values of the direct coil instructions whenever the intermediate variable changes.  These rungs 

should appear after the state equations in a ladder program for proper operation. 
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Figure 12 shows the last section of the program.  This section includes the timer function 

actuated by state variable S3 and the output equations.  The output equations are very simple.  

They relate the state variables to the desired physical output points.  The timer rung is the last 

rung in the program and is set to 10 seconds to test the program. 

 

 

 

 
 

Figure 11.  State Variable Updates For Example Problem. 

 

 

 

 

 

 
Figure 12. Output And Timer Equations For Example Problem. 
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PLC Programming Project-Sequential Control of Three Conveyors 

 

 
 

Figure 13.  Sequential Conveyor Control 

 

Program 1 

Figure 13  above shows a three conveyor material transfer system.  A supply chute delivers the 

material to conveyor 3 driven by motor M3.  The flow of material is controlled by a gate that is 

actuated by a electro-pneumatic system.  This conveyor transfers the material to conveyor 2  

which is driven by motor M2.  Finally the material is transferred to a storage bin by conveyor 1 

driven by motor M1. 

Design and code in the Micro 850 trainer a control program for this system.  A single on/off 

momentary-contact push-button station will control the whole process using the following 

procedure: 

System Start Up 

1.)  pressing the start switch will immediately start motor M1.  The motor must run for 10 

seconds so the conveyor belt has time to reach operating speed.  A red indicator lamp is 

energized when the start switch is depressed and remains on as long as the system operates. 

2.)  After the 10 second delay has ended, conveyor 2 starts and accelerates for 10 seconds also. 

3.)  Conveyor 3 is started after both conveyors 1 and 2 have been started.  Finally, Conveyor 3  

accelerates for 10 seconds. 

4.)  After all three conveyors are running the electro-pneumatic system is activated opening the 

material control gale allowing the material to fall onto the conveyors. 
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System Shut Down 

1.)  The stop push button is depressed. 

2.)  The flow of material though the gate is stopped by closing it. 

3.)  All motors must continue to run for 30 seconds to clear material from the conveyor belts. 

After this time delay all motors are de-energized and a green indicator lamp lights to show 

that the system is stopped.  This light will remain on after the push button is released.  It goes 

out when the start button is pressed. 

Use the following I/O assignments on the trainer and develop a PLC program to implement this 

control. 

 

DI0  (N.O. switch) start   DO2    red run lamp 

DI2 (N.C. switch) stop   DO4    green stop lamp 

_SYS_T_SCAN=First Scan Bit  DO5    conveyor motor 3 

      DO3    conveyor motor 2 

      DO1    conveyor motor 1 

      DO7   material gate open  

Program 2 

To save wear on the conveyor system, the above control is modified to shut down each conveyor 

in sequence as it empties.  Tests show that conveyor 3 takes 7 seconds to clear, conveyor 2 takes 

9 seconds to clear, and conveyor 1 takes 14 seconds to clear. 

Modify the first program to cause the conveyors to shut down in the sequence 3-2-1 after the 

gate is closed with the time delays required to clear each belt. 

 

Lab 7 Assessment 

Complete and submit the following items for grading and perform the listed actions to complete 

this laboratory assignment. 

 

1.) Complete the online quiz over Lab 7 technical background. 

2.) Develop a state transition diagrams for programs 1 and 2 

3.) Write Boolean state equations for programs 1 and  2 

4.) Code programs 1 and 2 into the PLC trainer 

5.) Demonstrate working programs to the lab TA 

6.)  Submit pdf files of the working programs, the developed state diagrams, and the state 

equations to the dropbox for lab 7  


