Oscilloscope Controls Lesson 12 EET 150 # Scope Controls Learning Objectives - In this lesson you will: - learn the location and function of oscilloscope controls. - see block diagrams of analog and digital oscilloscopes. - see how different input coupling affects displayed signals. - learn how to set oscilloscope controls to make measurements - learn how to set the triggering controls to stabilize a scope display. - examine scope probe operation. - see how to compensate a scope probe. - determine how scope bandwidth affects measurement accuracy ## Vertical Input Coupling Ac or Dc Setting DC coupling passes both ac and dc voltages AC coupling passes only ac part of signal 4 ## Setting the Oscilloscope for Measurement Connect probe(s) to scope input (1x or 10x) •10x expands range increases accuracy Adjust screen display (brightness and focus) Adjust vertical gain to expected range of input • If range unknown set to maximum Select proper coupling of input - · Ac coupling blocks dc signal and passes ac only - Dc coupling passes both ac and dc signals Adjust time scaling to expected range of input signal Set triggering source and level ## Scope Triggering Basics A properly triggered scope will have a stable screen display Trace starts at same point each sweep Time Sweep **Un-triggered Display** Triggered Display ## Trigger Level and Slope Trigger controls compare the signal edge to user-set levels and polarity (+/- slope) <u>Trigger Level</u> – determines where on signal edge the trigger point occurs <u>Trigger Slope</u> – determines whether trigger point occurs on rising or falling edge. ## **Trigger Sources** #### Input Channels - · Input used to start time sweep - · Most commonly used #### Power Source (Line Trigger) - Trigger signal derived from power line of scope - · Ideal for triggering signals based on "wall power" - · Locks on signal that are multiples of 60 Hz #### **External Source** - · Signal not derived from inputs - · Additional signal must be applied ## **Trigger Modes** <u>Trigger Mode</u> – determines how and when the scope displays the signal #### Common Trigger Modes Auto – causes scope to sweep trace without input signal applied. Display does not disappear when signal removed. Most commonly used setting Normal – only causes scope to sweep trace when signal is applied at has appropriate trigger level and slope. With no input, no display on analog scope or frozen display on digital scope. ## **Probe Compensation** 10x probes must be adjusted to give best performance. This is called probe compensation. 10x probe forms a voltage divider with parallel capacitance. An adjustable capacitor eliminates this effect. Square wave test signal used to make necessary adjustment ## Scope Frequency Response Scope must have sufficient frequency response (Bandwidth) to accurately reproduce signals. Lack of bandwidth prevents scope from displaying rapidly changing signals Figure 47. The higher the partomous, the more accurate the reproduction of your signal, as illustrated with a signal captured at 250 MHz, 1 GHz and 4 GHz hardwidth levels. <u>Limited bandwidth effects</u> lack of frequency resolution distorted amplitude lost signal edges lost signal edges Five Times Rule Required Bandwidth = 5 x highest measured frequency ## **Oscilloscope Controls** End Lesson 12 EET 150 Coming Next: Electrical Connections