AC VOLTAGE SOURCES

Lesson 5 EET 150

Ac Sources Learning Objectives

- In this lesson you will:
- learn how magnetic dipoles interact.
- see how electromagnets are constructed
- observe changes in magnetic fields for dc and ac currents
- see how generators create ac voltage
- see how transformers operate
- learn schematic symbols for ac generators and transformers
- study a block diagram for a typical laboratory dc power supply

Ac Generators

Schematic Symbol for Ac Generators (Alternators)

Symbol represents both power generators and small signal devices used in electronics

Must specify voltage and frequency values

Magnetic Coupling Transformer Action

Two coils wound on a common magnetic core form a transformer

Air Core

Magnetic Core

Schematic Symbols

Iron core transformer 120/12.6 V

Used to increase and decrease voltage levels in ac systems Will not work with do

Number of turns in coils determine characteristics

Transfomers Power Transformer Applications

Industrial Power Supply

Bench-top Isolation Transformer

*

Transformer Action

Magnetic field produced in primary coil induces voltage in secondary coil

 N_p = turns in primary coil N_s = turns in secondary coil V_p = primary voltage applied V_s = secondary voltage induced

 $V_s < V_p$ Step-down $V_s > V_p$ Step-up

Transformer Action

Induced voltage is proportional to number of turns in coils

Equation

Example: Given N_p =100, N_s =50 and V_p =120 find

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad \frac{N_p}{N_s}$$

$$\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{100}{50} = \frac{120}{V_s}$$

$$100V_s = 50(120)$$

$$V_s = \left(\frac{50}{100}\right)(120) = 60$$

Laboratory Dc Power Supplies

Dc Power Supplies – Instruments that produce controllable dc voltages and currents from 120 V Ac outlet voltages

Replace batteries in lab experiments and electronics design

Typical Voltages

0 -20 V dc

0-30 V dc

5 V dc fixed

Supplies can have single output or

Multiple outputs

Current limits prevent damage to supply or designed circuit

Ac Voltage Sources

End Lesson 5 EET 150
Coming Next: Simple Circuit Analysis
Using Ohm's Law

4