Basic Electric Circuits Series Circuits

Lesson 7 EET 150

Series Circuit Learning Objectives

- In this lesson you will:
- learn the characteristics of a series electric circuit.
- solve a series electric circuit using a voltmeter and Ohm's Law
- see how a series circuit can be used as a voltage divider
- solve example problems
- find the equivalent resistance for a series-connected string of resistors

Series Circuits

Series Circuit Characteristics

- · Components connected end-to-end
- Current only follows one path
- Voltage of source divides between components according to their value
- Sum of component voltage values must equal source value

 $E_s = V_{R1} + V_{R2} + V_{R3}$ Kirchhoff's Voltage Law

Solving series circuits using Ohm's law and a voltmeter $V_{R1}=6.5 \text{ V} \qquad V_{R2}=8.5 \text{ V}$ $I = \frac{V_{R1}}{R_1} = \frac{6.5 \text{ V}}{65 \Omega} = 0.1 \text{ A}$ $I = \frac{V_{R2}}{R_2} = \frac{8.5 \text{ V}}{85 \Omega} = 0.1 \text{ A}$ $I = \frac{V_{R3}}{R_2} = \frac{5.0 \text{ V}}{85 \Omega} = 0.1 \text{ A}$ $I = \frac{V_{R3}}{R_3} = \frac{5.0 \text{ V}}{50 \Omega} = 0.1 \text{ A}$ $V_{R3}=5.0 \text{ V}$ $V_{R3}=5.0 \text{ V}$ $V_{R3}=5.0 \text{ V}$ $V_{R3}=5.0 \text{ Current, I same in all resistors}$

The voltage divider circuit is a series circuit with two resistors

Design Formula

Voltage across resistor, R₂, is considered the output of the circuit.

Series Circuits

Example: A 120 V dc source is series connected to a 50 k Ω and a 100 k Ω resistor. (See the figure.) What is the voltage output read by the meter?

4

Series Resistors

Simplifying series resistors

 $R_T = R_1 + R_2 + R_3$

 $\boldsymbol{R}_{\boldsymbol{T}}$ is the equivalent value of the series resistors

Equivalent Circuit

Voltage source will supply the same current, I, to $\ensuremath{R_{T}}$ as to $R_1+R_2+R_3$.

This formula works for any number of resistors

Simplifying Series Resistors Example

Find the equivalent resistance, $R_{\scriptscriptstyle T}$, for the circuit below.

 R_T =235 Ω

End Lesson 7 EET 150
Coming Next: Parallel Electric Circuits

BASIC ELECTRIC CIRCUITS SERIES CIRCUITS

