PARALLEL ELECTRIC CIRCUITS

Lesson 8 EET 150

Lesson Objectives

In this presentation you will learn:

how to recognize a parallel circuit

the characteristics of a parallel electric circuit

how to find the currents flowing in each branch of a parallel circuit using Ohm's Law

how to find the total current flowing in a parallel circuit

how to compute the equivalent resistance of a group of parallel loads

Parallel Electric Circuits

Commonly used in house wiring

Characteristics

Loads connected "across" voltage source

(Each load has connections to terminals of voltage source)

Voltage the same across each load.

Current divides among loads based on load resistance (smaller R greater I)

Sum of load currents equals source current (Kirchhoff's Current Law)

Parallel Circuits

Simplifying Parallel Resistors

 R_{T} is equivalent value of parallel resistors

 R_T draws the same current as R_1 R_2 and R_3 in parallel.

Calculating Equivalent Parallel Resistances

Two resistors only:

$$R_T = \frac{R_1 R_2}{R_1 + R_2}$$

Two or more resistors:

$$R_{\tau} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

Û

Parallel Electric Circuits

End Lesson 8 EET 150

Coming Next: Electronic Component Data

Sheets

