ET 304A
Electric Circuits Laboratory
Lab 9
Ac Circuits and Phasor Algebra

Objective: Measure the ac voltages with an oscilloscope and verify the phase relationships between voltages in a ac circuit using phasor algebra.

Procedure

Part 1: R-C Circuits

1.) Construct the circuit below with a value of $\mathrm{R}=15 \mathrm{k} \Omega$ and a value of $\mathrm{C}=0.01 \mu \mathrm{~F}$. The source voltage $\mathrm{V}(\mathrm{t})=2 \sin (2 \pi \mathrm{ft})$ with $\mathrm{f}=1000 \mathrm{~Hz}$.
2.) Sketch the scope traces of V_{c} and $V_{i n}$ on the axis provided. Indicate the voltage and time scales. Measure the phase shift for later reference. Use $\mathrm{V}_{\text {in }}$ as the zero angle phasor.
3.) Calculate the theoretical values of V_{c} using phasor algebra. Comment on the accuracy of the results in the lab report.
4.) Let $\mathrm{R}=4.7 \mathrm{k} \Omega$ and sketch the trace of the new V_{c} as was done in step 2 on the same axis. Calculate the theoretical values for comparison.
5.) Let $\mathrm{R}=33 \mathrm{k} \Omega$ and repeat step 4
6.) Comment on how the change in resistance affects the phase angle between $\mathrm{V}_{\text {in }}$ and V_{C} as the value of R changed.

Part 2: R-L Circuits

1.) Construct the circuit below with $\mathrm{L}=10 \mathrm{mH}$. The source voltage $\mathrm{V}(\mathrm{t})=2 \sin (2 \pi \mathrm{ft})$ with $\mathrm{f}=10,000 \mathrm{~Hz}$. Size the R such that $\mathrm{R}=\mathrm{X}_{\mathrm{L}}$ when the source frequency is 10 kHz .
2.) Measure the dc resistance of the inductor coil, R_{c}, and record it for future use.

3.) Compute the Q of the inductor when it operates at the source frequency.
4.) Measure $\mathrm{V}_{\text {in }}$ and V_{L} and sketch them on the provided sheets. Measure the phase for later use.
5.) Calculate the theoretical values of V_{L} using phasor algebra. Comment on the accuracy of the results in the lab report.
6.) Let $\mathrm{R}=15$ ohms and graph the trace of V_{L} on the same axis. Calculate the theoretical values as in step 5.
7.) Repeat step 6 with $\mathrm{R}=680$ ohms.
8.) Comment on how the change in resistance affects the phase angle between $\mathrm{V}_{\text {in }}$ and V_{L} as the value of R changed. Compare the measured values to the theoretical in the report.

Part 3: R-L-C Circuits

1.) Construct the circuit below with $\mathrm{C}=0.01 \mu \mathrm{~F}$ and $\mathrm{L}=10 \mathrm{mH}$. Compute the series
resonant frequency using:

$$
\mathrm{f}_{\mathrm{s}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \mathrm{~Hz}
$$

Now find the value of R by letting $R=X_{L}=X_{C}$ with X_{L} and X_{c} given by:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} \\
& \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}
\end{aligned}
$$

The value of $V_{\text {in }}$ is set to the resonant frequency and is given by $V_{\text {in }}=2 \sin \left(2 \pi f_{s} t\right)$
2.) Measure the voltages $\mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{L}}$, and V_{LC}. Sketch the traces on the same axis.
3.) Find the phasor value of Vc, the voltage across the capacitor, from the measured values of V_{L} and $V_{L C}$. Compare this to the theoretical values by using phasor algebra.

Report:

1.) Follow the outline for the standard lab report.
2.) All data must be in tables. Make tables that compare the theoretical and measured phasor values for each part.
3.) Use the attached graph sheets to sketch the scope traces for each part. Make photo copies of this page if necessary.

Part \qquad

Channel 1 Volts/div \qquad Channel 2 Volts/div \qquad Time/div \qquad Part \qquad

Channel 1 Volts/div \qquad Channel 2 Volts/div \qquad Time/div \qquad

