ET 304A Electric Circuits Laboratory Lab 9 Ac Circuits and Phasor Algebra

Objective: Measure the ac voltages with an oscilloscope and verify the phase relationships between voltages in a ac circuit using phasor algebra.

Procedure

Part 1: R-C Circuits

1.) Construct the circuit below with a value of R=15k Ω and a value of C=0.01 μ F. The source voltage V(t) = 2sin(2 π ft) with f=1000 Hz.

- 2.) Sketch the scope traces of V_c and V_{in} on the axis provided. Indicate the voltage and time scales. Measure the phase shift for later reference. Use V_{in} as the zero angle phasor.
- 3.) Calculate the theoretical values of V_c using phasor algebra. Comment on the accuracy of the results in the lab report.
- Let R=4.7kΩ and sketch the trace of the new V_c as was done in step 2 on the same axis. Calculate the theoretical values for comparison.
- 5.) Let $R=33k\Omega$ and repeat step 4
- 6.) Comment on how the change in resistance affects the phase angle between V_{in} and V_c as the value of R changed.

Part 2: R-L Circuits

- 1.) Construct the circuit below with L=10 mH. The source voltage $V(t) = 2\sin(2\pi ft)$ with f=10,000 Hz. Size the R such that R=X_L when the source frequency is 10 kHz.
- 2.) Measure the dc resistance of the inductor coil, R_c, and record it for future use.

- 3.) Compute the Q of the inductor when it operates at the source frequency.
- 4.) Measure V_{in} and V_L and sketch them on the provided sheets. Measure the phase for later use.
- 5.) Calculate the theoretical values of V_L using phasor algebra. Comment on the accuracy of the results in the lab report.
- 6.) Let R=15 ohms and graph the trace of V_L on the same axis. Calculate the theoretical values as in step 5.
- 7.) Repeat step 6 with R=680 ohms.
- 8.) Comment on how the change in resistance affects the phase angle between V_{in} and V_L as the value of R changed. Compare the measured values to the theoretical in the report.

Part 3: R-L-C Circuits

1.) Construct the circuit below with C=0.01 µF and L=10 mH. Compute the series

resonant frequency using:

$$f_s = \frac{1}{2\pi\sqrt{LC}}$$
 Hz

Now find the value of R by letting $R = X_L = X_C$ with X_L and X_c given by:

$$X_{\rm L} = 2\pi f L$$
$$X_{\rm C} = \frac{1}{2\pi f C}$$

The value of V_{in} is set to the resonant frequency and is given by $V_{in}=2\sin(2\pi f_s t)$

- 2.) Measure the voltages $V_{in} V_L$, and V_{LC} . Sketch the traces on the same axis.
- 3.) Find the phasor value of Vc, the voltage across the capacitor, from the measured values of V_L and V_{LC} . Compare this to the theoretical values by using phasor algebra.

Report:

- 1.) Follow the outline for the standard lab report.
- 2.) All data must be in tables. Make tables that compare the theoretical and measured phasor values for each part.
- 3.) Use the attached graph sheets to sketch the scope traces for each part. Make photo copies of this page if necessary.

