Lesson 4: Solving Magnetic Circuits with Electrical Analogies

ET 332a

Dc Motors, Generators and Energy Conversion Devices

Magnetic-Electric Circuit Analogies

<u>Sources</u> = windings and current flowing into coils

<u>Core Reluctances</u> = length, area and permeability of core carrying a given flux

<u>Air Gap Reluctances</u> = length, area and permeability of free space (air) used to compute these quantities

Known flux or Flux Density

One of these quantities must be given to find the permeability of core sections. Remember, reluctance is non-linear and depends on the level of flux carried by a core section.

Example 3 Solution –Part 1

Solution continued

Find Flux in air gap

$$= B_{ag}A = (0.2 - Wb/m2)(0.04m^2) = 0.008 Wb$$

 $H_{0.3} = field intensity of 0.3 m coer}$ $H_{0.69} = field intensity of 0.69 m core$
From B-N curve p 8 Text
 $H_{0.3} = H_{0.69} = 0.47$ densteds $(19.57\frac{A-t/m}{10ersteds}) = 37.4 A-t/m$
Calculate total mmF for center leg $L_{ag} = 0.5 \text{ cm}(\frac{1m}{100 \text{ cm}}) = 0.005 \text{ m}$
 $H_{ag} = H_{ag}(L_{ag}) = 159$, 155 A-t/m $(0.005m) = 795.77$ A-t air gap
 $H_{0.3} = MmF$ in 0.3 m section $(37.4 A-t/m)(0.3 m) = .11.2 A-t$
 $H_{0.69} = mmF$ in 0.69 m section $(37.4 A-t/m)(0.69m) = 25.8 A-t$

Example 3 Solution –Part 1

$$\begin{aligned} & \exists_{dbef} = H_{efab} \left(L_{ab} + L_{fe} + J_{af} \right) \\ & \exists_{abef} = 2944 \ A - t/m \left(p.8 \ m + 0.8 \ m + 1.0 \ m \right) = 2944 \ A - b/m \left(z.6 \ m \right) \\ & \exists_{abef} = 7654.4 \ A - t \\ & \exists_{def} = 7654.4 \ A - t \\ & \exists_{def} = \exists_{abef} \ d^{rop} \ sum \ of \ d^{rops} \ of \ R_{abef} \ and \ parallel \\ & paths \\ & \exists_{tat} = \exists_{abef} \ t \ \exists_{gap} = 7654.4 \ A - t + 833 \ A - t \\ & \exists_{tat} = 8488 \ A - t \\ & \exists_{tat} = 8488 \ A - t \\ & \exists_{tat} = 8488 \ A - t \\ & \exists_{tat} = 8488 \ A - t \\ & \exists_{tat} = NI \ so \ I = \frac{J_{bb}}{N} = \frac{8498 \ A - t}{80 \ t} = 106 \ A \\ & use \ Ohm's \ Law \ t_{e} \ find \ V \\ & V = I \cdot R = 106 \left(z.05 \ R \right) = \frac{21715 \ V \ ANSW}{S} \end{aligned}$$

14

Compute permeability of each section Compute relative permeability

From Part I, in Center Core $B_{ag} = 0.2 T$ $H_{\sigma,3} = H_{0,69} = 37.4 A-6/m$ For right Core, B = 1.45 T $H_{bcde} = 277.7 A-6/m$ For left core, B = 1.65 T $H_{abel} = 2944 A-6/m$

Inductance Calculation Example

A 100 turn coil with a cross-section area of 0.025 m^2 is 20 cm long. The core material has a relative permeability of 2750. Find the inductance of this coil.

Set up proportion

$$\frac{\mathbf{P}_{h60}}{\mathbf{P}_{h50}} = \frac{\mathbf{k}_{n} \cdot \mathbf{f} \cdot \mathbf{B}_{max}^{1.6}}{\mathbf{k}_{n} \cdot \mathbf{f} \cdot \mathbf{B}_{max}^{1.6}} \mathbf{s}_{50}$$

Cross multiply and solve for $\mathsf{P}_{\mathsf{h50}}$

$$P_{h60} \cdot \begin{bmatrix} k_{n} \cdot f \cdot B_{max}^{1.6} \end{bmatrix}_{50} = P_{h50} \cdot \begin{bmatrix} k_{n} \cdot f \cdot B_{max}^{1.6} \end{bmatrix}_{60}$$

$$P_{h60} \cdot \begin{bmatrix} k_{n} \cdot f \cdot B_{max}^{1.6} \end{bmatrix}_{50} = P_{h50}$$

$$2.5 \text{ kW} \cdot \begin{bmatrix} k_{n} \cdot 50 \cdot P_{max}^{1.6} \end{bmatrix}_{60} = P_{h50}$$

$$2.083 \text{ kW} = P_{h50}$$

ET 332a Dc Motors, Generators and Energy Conversion Devices END LESSON 4: SOLVING MAGNETIC CIRCUITS WITH ELECTRICAL ANALOGIES