

Learning Objectives

After this presentation you will be able to:

- Explain how torque and speed is represented.
> Convert power, torque and speed units from SI to English Units
$>$ Perform simple mechanical calculations.
> Identify common mechanical loads for electrical machines.

Speed Definitions and Unit CONVERSIONS

Angular speed (radians/second)
$\mathrm{rad} / \mathrm{sec}$ used in calculations $\quad \omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}$

$$
\begin{aligned}
& \omega=\text { angular speed (radians } / \mathrm{sec} \text {) } \\
& \theta=\text { arc length (radians) }
\end{aligned}
$$

Standard for motors and generators
Revolutions per minute (RPM)
Conversions
$\mathrm{n}=\left(\frac{60}{2 \pi}\right) \cdot \omega$
$\mathrm{rad} / \mathrm{sec}$ to RPM
$\omega=\left(\frac{2 \pi}{60}\right) \cdot n$
RPM to rad/sec

Force and torque

Lever arm
Definitions
Torque $=($ applied force $) \cdot($ perpendicular distance $)$

$$
\mathrm{T}=\mathrm{F} \cdot(\mathrm{r} \cdot \sin (\theta))
$$

Force and Torque Example

Example: torque wrench

$$
\mathrm{T}=20 \mathrm{~N}\left(0.2 \mathrm{~m} \sin \left(90^{\circ}\right)\right)=4.0 \mathrm{~N}-\mathrm{m}
$$

Force and Torque Example

Example: Non-perpendicular distance

$$
\mathrm{T}=\mathrm{F}(\mathrm{r} \sin (\theta))=20 \mathrm{~N}\left(0.2 \mathrm{~m} \sin \left(60^{\circ}\right)\right)=3.46 \mathrm{~N}-\mathrm{m}
$$

Circular Motion and Torque

Torque changes with position in circular motion

Work and Power

Energy dissipates and work occurs when a force acts on a mass

Lifting a weight requires work and dissipates energy

Work $=($ Force $)($ Distance $)$ Linear Systems
W (Joules) $=\mathrm{F}$ (Newtons) X D (Meters)
Power is how fast work is done
Rate of energy consumption
Power $=$ Work/Time
P (Watts) $=W$ (Joules) $/ t$ (seconds)
Force $=($ Mass $)($ Acceleration of gravity $)=$ Weight

Work and Power in Rotating Systems

Work in rotating system

$$
\begin{aligned}
& \mathbf{W}=\mathbf{T} \cdot \theta \\
& \mathrm{T}=\text { torque }(\mathrm{N}-\mathrm{m}) \\
& \theta=\text { angular distance }(\mathrm{m})
\end{aligned}
$$

Power in rotating system

$$
\begin{aligned}
& \mathbf{P}=\mathbf{T} \cdot \omega \\
& \mathrm{P}=\text { power }(\mathrm{Watts}, \mathrm{~W}) \\
& \mathrm{T}=\text { torque }(\mathrm{N}-\mathrm{m}) \\
& \omega=\text { angular speed }(\mathrm{rad} / \mathrm{sec})
\end{aligned}
$$

English-SI Unit Conversions

Mechanical Power Conversion- Watts to Hp
Conversion factor: $1 \mathrm{hp}=746$ watts

$$
\begin{aligned}
& \mathrm{P}(\mathrm{hp})=\frac{\mathrm{P}(\mathrm{~W})}{746 \mathrm{~W} / \mathrm{hp}} \mathrm{Wattstohp} \\
& \mathrm{P}(\mathrm{~W})=\mathrm{P}(\mathrm{hp}) \cdot 746 \mathrm{~W} / \mathrm{hp} \text { hp to Watts }
\end{aligned}
$$

English-SI Unit Conversions

Power (HP) to Torque (lb-ft) in English Units

$$
\mathrm{T}=\frac{5252 \cdot \mathrm{P}}{\mathrm{n}}
$$

Where: $\mathrm{T}=$ torque in $\mathrm{lb}-\mathrm{ft}$
$\mathrm{P}=$ power in horsepower (hp)
$\mathrm{n}=$ speed in rpm
Torque with mixed SI and English units

$$
\mathrm{T}=\frac{7.04 \cdot \mathrm{P}}{\mathrm{n}}
$$

Where: $\mathrm{T}=$ torque in $\mathrm{lb}-\mathrm{ft}$
$\mathrm{P}=$ power in Watts
$\mathrm{n}=$ speed in rpm

English-SI Unit Conversions

Torque in SI Units. Remember the definition of power...

$$
\mathrm{P}=\mathrm{T} \cdot \omega \quad \mathrm{~T}=\frac{\mathrm{P}}{\omega}
$$

$\mathrm{T}=$ torque $(\mathrm{N}-\mathrm{m})$
P = Watts (W)
$\omega=$ angular speed (radians/s)
Solve torque equations for speed
English
Units

$$
\mathrm{n}=\frac{\mathrm{P}}{5252 \cdot \mathrm{~T}}
$$

SI
$\omega=\frac{P}{T}$

Unit Conversion Examples

Example 1: A motor develops 25 Hp at the shaft at a speed of 1750 rpm . Find the torque ($\mathrm{N}-\mathrm{m}$) developed and the power output in Watts

Make power unit conversion. $\mathrm{HP}=25 \mathrm{hp}$

$$
\mathrm{P}=746 \mathrm{~W} / \mathrm{hp} \cdot \mathrm{HP}=746 \mathrm{~W} / \mathrm{hp} \cdot 25 \mathrm{hp}=18,650 \mathrm{~W}
$$

Find torque by converting n in rpm to ω in radians/second

$$
\begin{aligned}
& \omega=\left(\frac{2 \pi}{60}\right) \cdot 1750 \mathrm{rpm}=183.17 \mathrm{rad} / \mathrm{s} \\
& \mathrm{~T}=\frac{\mathrm{P}}{\omega}=\frac{18,650 \mathrm{~W}}{183.17 \mathrm{rad} / \mathrm{s}}=101.8 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Unit Conversion Examples

Example 2: A generator delivers 50 kW of power at $170 \mathrm{rad} / \mathrm{s}$. What horsepower and torque (ft-lb) should the drive engine have.

Convert power in watts to hp. Remember $50 \mathrm{~kW}=50,000 \mathrm{~W}$

$$
\begin{aligned}
& \mathrm{HP}=\frac{\mathrm{P}}{746 \mathrm{~W} / \mathrm{hp}}=\frac{50,000 \mathrm{~W}}{746 \mathrm{~W} / \mathrm{hp}}=67 \mathrm{hp} \\
& \text { ue in lb-ft, convert the speed into rpm } \frac{7.04 \cdot 50,000 \mathrm{~W}}{1624.2 \mathrm{rpm}}=216.7 \mathrm{lb}-\mathrm{ft} \\
& \mathrm{~T}=\frac{5252 \cdot 67 \mathrm{hp}}{1624.7 \mathrm{rpm}}=216.7 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

$$
\mathrm{n}=\omega \cdot\left(\frac{60}{2 \pi}\right)=170 \mathrm{rad} / \mathrm{s} \cdot\left(\frac{60}{2 \pi}\right)=1624.2 \mathrm{rpm}
$$

Now you can find torque
with these two equations

$$
\mathrm{T}=\frac{7.04 \cdot \mathrm{P}}{\mathrm{n}} \quad \text { or } \quad \mathrm{T}=\frac{5252 \cdot \mathrm{P}}{\mathrm{n}}
$$

Mechanics for Motors and Generators

Power is conserved in a lossless mechanical system.
(Need consistent units)
In a rotational motion system

$$
\mathrm{P}=\mathrm{T} \cdot \omega
$$

In a linear motion system

$$
\begin{aligned}
& \mathrm{P}=\mathrm{F} \cdot \mathrm{~V} \\
& \text { Where: } \\
& \mathrm{F}=\text { force in Newtons }(\mathrm{N}) \\
& \mathrm{v}=\text { velocity in meters } / \text { second }(\mathrm{m} / \mathrm{s}) \\
& \mathrm{T}=\text { torque in } \mathrm{N}-\mathrm{m} \\
& \omega=\text { angular velocity }(\mathrm{rad} / \mathrm{s})
\end{aligned}
$$

Since power is conserved $T \cdot \omega=F \cdot v$

Mechanics for Motors and Generators

Example 3: A small electric locomotive develops 620 N -m of torque at 900 rpm as it moves at a speed of 15 mph . Determine the power, in horsepower, and Watts this requires. Also compute the force opposing the locomotive.

Compute rotational power

$$
\begin{aligned}
& \mathrm{P}=\mathrm{T} \cdot \omega=620 \mathrm{~N}-\mathrm{m} \cdot\left(\frac{2 \pi}{60}\right) \cdot \varphi 00 \mathrm{rpm}_{-} \\
& \mathrm{P}=58,434 \mathrm{~W}
\end{aligned}
$$

Convert to horsepower

$$
\mathrm{HP}=\mathrm{P} \cdot\left(\frac{1 \mathrm{hp}}{746 \mathrm{~W}}\right)=58,434 \mathrm{~W} \cdot\left(\frac{1 \mathrm{hp}}{746 \mathrm{~W}}\right)=78.3 \mathrm{hp}
$$

Mechanics for Motors and Generators

Example 3 continued
Since power is conserved $P=T \cdot \omega=F \cdot v$
Convert velocity to m / s

$$
\mathrm{v}=(15 \mathrm{pri} / \mathrm{hr}) \cdot\left(\frac{1609 \mathrm{~m}}{1 \text { pii }}\right) \cdot\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=6.704 \mathrm{~m} / \mathrm{s}
$$

From previous calculations
$\mathrm{P}=58,434 \mathrm{~W}$
$\mathrm{P}=\mathrm{F} \cdot \mathrm{v}$

$$
\mathrm{F}=\frac{\mathrm{P}}{\mathrm{v}}=\frac{58,434 \mathrm{~W}}{6.704 \mathrm{~m} / \mathrm{s}}=\frac{58,434 \mathrm{~N}-\mathrm{m} / \mathrm{s}}{6.704 \mathrm{~m} / \mathrm{s}}=8716.3 \mathrm{~N}
$$

Mechanics for Motors and Generators

Example 4: An electric hoist lifts an 850 lb (force) at a speed of $3.5 \mathrm{ft} / \mathrm{sec}$. The hoist drum has a diameter of 30 inches. Calculate the torque ($\mathrm{lb}-\mathrm{ft}$) and the speed of the motor performing this lift. What horsepower must the motor develop to make this lift?

Mechanics for Motors and Generators

Example 4 continued

Remember the torque definition $\mathrm{T}=\mathrm{F} \cdot \mathrm{d}$
Where d is distance to center of rotation (half the diameter)

$$
\begin{aligned}
& \mathrm{d}=\frac{30 \mathrm{in}}{2}=15 \mathrm{in} \\
& \mathrm{~T}=50 \mathrm{lb} ;\left(\frac{15 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}}\right)=1062.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Find the speed from $\quad T=\frac{5252 \cdot \mathrm{P}}{\mathrm{n}}$ Solve this for n , speed in rpm

$$
\frac{\mathrm{T}}{5252 \cdot \mathrm{P}}=\frac{1}{\mathrm{n}} \Rightarrow \frac{5252 \cdot \mathrm{P}}{\mathrm{~T}}=\mathrm{n} \quad \frac{5252 \cdot 6.409 \mathrm{hp}}{1062.5 \mathrm{lb-ft}}=\mathrm{n}
$$

Mechanical Loads for Motors

Constant Speed - motor must maintain constant speed over wide range of torque loading.

Examples: machine tools (lathes, Mills etc) rolling mills (steel production)

Mechanical Loads for Motors

Constant Torque - motor works against constant force. Weight of load does not change.

Examples: Hoisting, conveyors

Mechanical Loads for Motors

Constant Power - Mechanical characteristic of the load change (size, weight). Torque and speed change

Example: Winding operations (cable, wire)

END Lesson 5: Mechanics For
Motors and Generators
ET 332a
Dc Motors, Generators and Energy Conversion
Devices

