

LEARNING OBJECTIVES

After this presentation you will be able to:

- Define voltage regulation of a synchronous machine
- Explain how saturation affects no-load voltage in a synchronous machine
- Compute voltage regulation using an approximate method that accounts for magnetic saturation.

Lesson 23_et332b.pptx

SYNCHRONOUS ALTERNATOR VOLTAGE REGULATION

Defining equation

$$\% VR = \frac{\left|V_{nl}\right| - \left|V_{rated}\right|}{\left|V_{rated}\right|} \cdot 100$$

Where: %VR = percentage voltage regulation

V_{rated} = nameplate voltage rating of machine V_{nl} = open circuit voltage of machine when supplying rated load at rated voltage

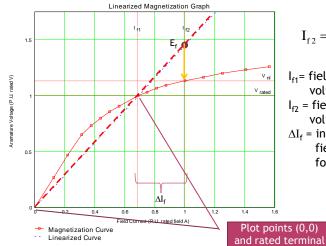
Voltage Regulation related to size of X_s . Lower value is better. Indicates amount of field current change required to maintain rated voltage.

Lesson 23_et332b.pptx

3

COMPUTING VOLTAGE REGULATION

 V_{nl} is not E_{af} . Must include the effects of saturation to get accurate value of %VR.


Use an approximate method to find V_{nl} . The hypothetical linearized magnetization curve estimates the value of V_{nl} . This is not equal to the open circuit voltage. We must include the voltage drop due to the synchronous reactance.

Method for finding Vnl using approximate method

- 1.) Compute value of E_{af}
- 2.) Plot value of E_{af} on graph and intersect with linearized magnetization curve
- 3.) Project vertical line down to magnetization curve
- Project horizontal line from intersection of step 3 to voltage axis and read off value of V_{nl}.

Lesson 23_et332b.pptx

$$\mathbf{I}_{f2} = \mathbf{I}_{f1} + \Delta \mathbf{I}_{f}$$

V and field I

I_{f1}= field I to produce rated voltage at no-load

I_{f2} = field I to produce rated voltage at rated load.

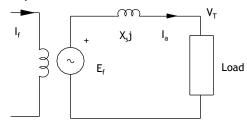
 ΔI_f = incremental increase in field I to compensate for X_s drop

SYNCHRONOUS ALTERNATOR VOLTAGE REGULATION

Lesson 23_et332b.pptx

<u>Example 23-1</u>: A three phase, 2-pole, 60 Hz alternator has a power rating of 6000 kVA at 13.8 kV. The armature is wye connected and has a synchronous reactance of 11.67 ohms/phase. It operates at rated kVA and rated voltage with a power factor of 90% lagging.

Find:


- a.) excitation voltage (E_f) ;
- b.) power angle (δ);
- c.) no-load voltage assuming no change in field current;
- d.) voltage regulation;
- e.) no-load voltage if field current is reduced to 85% of its value at rated load

Use the no-load magnetization curve provide on previous slide.

Lesson 23_et332b.pptx

EXAMPLE 23-1 SOLUTION (1)

Per phase model

Compute the value of E_f .

$$\bar{E}_{\varsigma} = \bar{V}_{\mathsf{T}} + \bar{I}_{\alpha} \bar{X}_{\mathsf{S}}$$

Lesson 23_et332b.pptx

EXAMPLE 23-1 SOLUTION (2)

by e Connected, so
$$\bar{I}_L = \bar{I}_p = \hat{I}_a$$
 $|\bar{I}_a| = \frac{S_T}{\sqrt{3} V_L}$

Use power factor to find phase angle on armature current

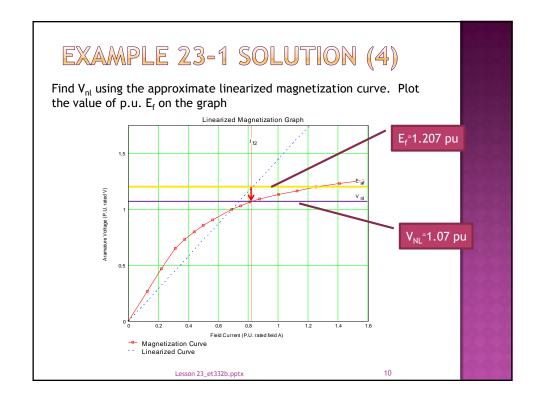
$$\theta = \cos^{-1}(F_P)$$

Lesson 23_et332b.pptx

EXAMPLE 23-1 SOLUTION (3)

Now compute the value of E_f using the formula given previously

C.) To find no-load Voltage, use graph.


Voltage axis and current scaled in P. U. based on

Vrated

IEI 9612.6V

Vbase 7967V Pu $|\vec{E}_f| = \frac{|\vec{E}_f|}{V_{base}} = \frac{9612.6V}{7967V} = 1.207 p.u.$

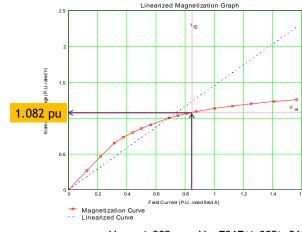
Lesson 23_et332b.pptx

EXAMPLE 23-1 SOLUTION (5)

Convert to actual phase voltage by multiplying by V_{base}

$$V_{nl} = V_{base} \cdot V_{nlpu} = 7967 \cdot 1.07 = 8525 \text{ V}$$
 Answer

d.) now compute the % VR from rated voltage and the no-load voltage


%VR =
$$\frac{|V_{nl}| - |V_{rated}|}{|V_{rated}|}$$
100% = $\frac{8525 - 7967}{7967}$ 100% = 7% Answer

Lesson 23_et332b.pptx

11

EXAMPLE 23-1 SOLUTION (6)

e.) Now find V_{nl} at 85% rated field I (0.85 pu). Read value from graph.

 V_{nlpu} = 1.082 pu V_{nl} =7967(1.082)=8620 V

Lesson 23_et332b.pptx

ET 332b Ac Motors, Generators and Power Systems

END LESSON 23: SYNCHRONOUS ALTERNATOR VOLTAGE REGULATION

Lesson 23_et332b.pptx